Cybersecurity challenges in the IoT era

Webinar | December 11, 2019
Using IoT platform security with mF2C to develop scalable secure edge-to-cloud applications
IoT Challenges

- Trust/Reputation of IoT
 - "Why should I trust this?"

- Legacy of IoT
 - Loads of insecure stuff already out there

- Barriers to building new applications
 - Have you ever programmed a microcontroller?
 - Limited devices (comp/mem/storage.)

- Keeping it secure
 - Potentially huge "attack surface"
 - Human factors, human bias
Platform Premises

- mF2C focuses on edge->fog->cloud applications
 - Tasks/data pushed to higher level if needed
- Build a *platform* for building applications
- Three use case applications:
 - Building sensors for emergencies (e.g. earthquakes)
 - Smart boats for boat sensor/location/harbour
 - Airport hub for traveller assistance
Generic Application
OSI (near enough) stack view

EDGE (mobile)
- IoT app
- WiFi (5G)
- REST / gRPC clients

FOG
- Implemented features
- task execution
- client/server
- LAN / WiFi

CLOUD
- Customer database
- service matching
- task execution
- server
- WAN
Platform Architecture

- WiFi (5G)
- LAN / WiFi
- REST / gRPC clients
- phone app
- recommender system
- task execution
- client/server
- database
- service matching
- task execution
- server
- WAN

Layer 0:
- Cloud agent
- Layer 0

Layer 1:
- Leader
- Backup
- mF2C_agent
- Layer 1

Layer 2:
- Leader
- Backup
- mF2C_agent
- Layer 2

Layer N:
- Leader
- Backup
- mF2C_agent
- Layer N

Layer N + 1:
- Leader
- Backup
- mF2C_agent
- Layer N + 1
Security Features

• Usually, device == 1 agent
 – Or microagent for smaller devices
• Device id tracks device lifetime
• Certification Authority in the cloud
 – Certificates to capable (fog) devices
 – Private key generated by (capable) device
 – Gateway gives access to cloud service
 – No Internet access for unauthenticated devices
• Edgier devices have private (typ. a serial bus) link to foggier devices
Zooming in further

mF2C Agent

Platform Manager

- **Service Orchestration**
 - Lifecycle management
 - SLA management

- **Distributed Exec. Runtime**
 - Task Management
 - Task Scheduling
 - COMPSs

- **Telemetry Monitoring**
 - Landscaper
 - Recommender
 - Analytics Engine

Agent Controller

- **Resource Management**
 - Discovery
 - Policies
 - Identification

- **User Management**
 - Profiling
 - Sharing model
 - Assessment

- **Event Manager**
 - GUI

- **Data Management**
 - Dataclay

- **Security**
 - Reverse Proxy
 - CAU Client
 - AC library

- **APIs**
 - Docker
 - Kubernetes
 - Swarm
 - CIMI
Addressing the challenges - Trust

• PKI for all participants
 – Distinct PKI roots for infrastructure and agents
 – Optionally distinct PKI for application
• CI/CD through Docker containers
• Trust model for security
• Application data
 – PUBLIC for unprotected
 – PROTECTED for integrity protected
 – PRIVATE for integrity and confidentiality
Addressing Challenges – Legacy

- mF2C builds entirely new applications, so no legacy?
- Some users bring own devices
- => botnet detection

- Early work on botnet detection
 – Distinguish attack from (say) emergency
 – Remote control of router/firewalls
Addressing Challenges - Barriers

• Build application on platform
 — ... however, mF2C is a research project

:-)
• Open source
• High TRL on some components
• Lots of clever people adding lots of clever features
• Some code written by professional programmers and RSEs

:(
• Platform has more features than a given app might need?
• Low TRL on some components
• Some code written by students rather than RSEs?
Addressing Challenges – Future

- mF2C updates through its CD framework
- Phone app (airport use case) through app store
- Edge hardware/firmware not addressed in project
 - (e.g. Azure Sphere..)
- Those pesky humans...
 - Make it easier to do the Right Thing
 - Need transparency for GDPR, too
Thanks!

• https://mf2c-project.eu/
• https://github.com/mF2C/
=> jens.jensen@stfc.ac.uk