How to exploit a bit flip in order to own the cloud

Kaveh Razavi

Cloud Threat Model(s) under Rowhammer

Possible today under certain conditions with Rowhammer bit flips

Dynamic Random Access Memory (AKA DRAM)

Each cell needs to be refreshed once in while (typically 64ms)

The Rowhammer Problem

Smaller capacitors are creating reliability problems.

Rowhammer: affects 87% of deployed DDR3 memory, DDR4 as well.

Kim et al., "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA'14 4

Exploiting These Flips

Random, previously unknown locations, single flips.

- 1) Templating
- 2) Massaging
- 3) Exploitation

Compromising Cloud Virtual Machines

- 1) Templating Attacker's own memory
- 2) Massaging Memory deduplication
- 3) Exploitation

Memory Deduplication

Memory Deduplication

Memory Deduplication

Compromising Cloud Virtual Machines

- Templating Attacker's own memory
- 2) Massaging Memory deduplication
- 3) Exploitation Corrupt RSA public keys (OpenSSH)

Factorizing Corrupted RSA Public Keys

 $PK' \rightarrow n' = p' \times q' \times z' \times \dots$

Attack's Success Rate (200 VMs)

All done?

Consistent audience question: what about ECC memory?

ECC DRAM

NON-ECC

Error-correction Codes (SECDED)

- Original paper demonstrated SECDED not to be enough
- ... but exploitation turned out to be difficult
 - ECC implementation is closed (guarantees unknown)
 - o 1 bit flips not visible,
 - 2 bit flips crash the system

ECC DRAM as a practical secure defense.

Recovering ECC Functions

- Observing signals are not easy at 1Ghz+
 - Need custom interposer
 - Expensive logic analyzer
- Fault injection with syringe needles!
- Short-circuit data lines with Vss
 - High-to-low voltage flips

• With some math, error reports allows for ECC recovery

Results

ID	Pattern	Config.	# flips	Flips location
AMD-1	$[\mathcal{P}_1]$	Ideal	3-BF-16	3 symbols, 1 in control bits
AMD-1	$[\mathcal{P}_2]$	Ideal	4-BF-16	Min. 2 symbols
Intel-1	$[\mathcal{P}_3]$	Ideal	4-BF-8	Min. 2 symbols
Intel-1	$[\mathcal{P}_4]$	Default	2-BF-8	Min. 2 symbols

TABLE V: Error patterns that can circumvent ECC.

TABLE VI: Percentages of rows with corruptions in an ECC DIMM.

$[\mathcal{P}_1]$	$[\mathcal{P}_2]$	$[\mathcal{P}_3]$	$[\mathcal{P}_4]$
0.12%	0.12%	0.06%	0.60%

Avoiding Crashes

Detect single flips and merge them for silent corruptions.

Exploitation with ECC Memory

DRAM Vendors: We Fixed Rowhammer in DDR4

Micron's DDR4 devices automatically perform a type of TRR mode in the background and provide an MPR Page 3 MPR3[3:0] of 1000, indicating there is no restriction to the number of ACTIVATE commands to a given row in a refresh period provided DRAM timing specifications are not violated.

* pTRR : Pseudo Target Row Refresh * Condition : 3DPC & > 32GB/Ch.

Target Row Refresh (TRR): keep track of intensely activated rows and refresh their neighbors.

Looking into in-DRAM TRR

- SoftMC: platform for DRAM studies
- Support for DDR4
- Precise control over DRAM commands
 - ACTIVATE, READ/WRITE, PRECHARGE, REFRESH
- Run DRAM out of spec

1 year of reverse engineering

#Corruptions

Successful patterns: many-sided Rowhammer

Assisted double-sided

4-sided

ul	ts
NT	
	ul

Madula	Date	Freq.	Size	Organization		MAC	Found	D a	at Dattan	Corruptions			Double	
mouute	(yy-ww)	(MHz)	(<i>GB</i>)	Ranks	Banks	Pins	MAC	Patterns	De.	si Fallern	Total	$1 \rightarrow 0$	$0 \rightarrow 1$	Refresh
$A_{0,1,2,3}$	16-37	2132	4	1	16	$\times 8$	UL	_		— —	-	_	-	—
\mathcal{A}_4	16-51	2132	4	1	16	$\times 8$	UL	4		9-sided	7956	4008	3948	-
\mathcal{A}_5	18-51	2400	4	1	8	×16	UL	_		-	-	_	-	-
$\mathcal{A}_{6,7}$	18-15	2666	4	1	8	$\times 16$	UL	_		-	-	_	-	-
\mathcal{A}_8	17-09	2400	8	1	16	$\times 8$	UL	33		19-sided	20808	10289	10519	-
\mathcal{A}_9	17-31	2400	8	1	16	$\times 8$	UL	33		19-sided	24854	12580	12274	-
\mathcal{A}_{10}	19-02	2400	16	2	16	$\times 8$	UL	488		10-sided	11342	1809	11533	\checkmark
\mathcal{A}_{11}	19-02	2400	16	2	16	$\times 8$	UL	523		10-sided	12830	1682	11148	\checkmark
$\mathcal{A}_{12,13}$	18-50	2666	8	1	16	$\times 8$	UL	_		-	-	_	-	-
\mathcal{A}_{14}	19-08 [†]	3200	16	2	16	$\times 8$	UL	120		14-sided	32723	16490	16233	-
$\mathcal{A}_{15}{}^{\ddagger}$	17-08	2132	4	1	16	$\times 8$	UL	2		9-sided	22397	12351	10046	-
\mathcal{B}_0	18-11	2666	16	2	16	$\times 8$	UL	2		3-sided	17	10	7	_
\mathcal{B}_1	18-11	2666	16	2	16	$\times 8$	UL	2		3-sided	22	16	6	-
\mathcal{B}_2	18-49	3000	16	2	16	$\times 8$	UL	2		3-sided	5	2	3	-
\mathcal{B}_3	19-08†	3000	8	1	16	$\times 8$	UL	_		-	-	_	-	-
$\mathcal{B}_{4,5}$	19-08†	2666	8	2	16	$\times 8$	UL	-		-	-	_	-	-
$\mathcal{B}_{6,7}$	19-08†	2400	4	1	16	$\times 8$	UL	_		-	-	_	-	-
\mathcal{B}_8^{\diamond}	19-08 [†]	2400	8	1	16	$\times 8$	UL	-		-	-	_	-	-
\mathcal{B}_9^\diamond	19-08†	2400	8	1	16	$\times 8$	UL	2		3-sided	12	_	12	\checkmark
$\mathcal{B}_{10,11}$	16-13 [†]	2132	8	2	16	$\times 8$	UL	-		-	-	-	-	-
$\mathcal{C}_{0,1}$	18-46	2666	16	2	16	$\times 8$	UL	_		-	-	_	-	-
$\mathcal{C}_{2,3}$	19-08†	2800	4	1	16	$\times 8$	UL	-		-	-	_	-	-
$\mathcal{C}_{4,5}$	19-08†	3000	8	1	16	$\times 8$	UL	_		-	-	_	-	-
$\mathcal{C}_{6,7}$	19-08†	3000	16	2	16	$\times 8$	UL	-		-	-	_	-	-
\mathcal{C}_8	19-08†	3200	16	2	16	$\times 8$	UL	_		-	-	_	-	-
\mathcal{C}_9	18-47	2666	16	2	16	$\times 8$	UL	_		-	-	-	-	-
$\mathcal{C}_{10,11}$	19-04	2933	8	1	16	$\times 8$	UL	_		-	-	_	-	-
$\mathcal{C}_{12}^{\ddagger}$	15-01†	2132	4	1	16	$\times 8$	UT	25		10-sided	190037	63904	126133	\checkmark
\mathcal{C}_{13} [‡]	18-49	2132	4	1	16	$\times 8$	UT	3		9-sided	694	239	455	_

Cloud Threat Models under Rowhammer

Possible today under certain conditions with Rowhammer bit flips Needs more research

Conclusions

- Possible to compromise cloud VMs with Rowhammer
- Rowhammer is not going away
- Getting harder ← things are improving

Ben Gras, Erik Bosman, Victor van der Veen, Lucian Cojocar, Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Onur Mutlu, Cristiano Giuffrida, Herbert Bos