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1 Executive Summary 

This document describes the ASTRID Use Cases, as elaborated in Task 4.1. The description extends 
the preliminary concepts outlined at the proposal stage and includes more concrete plans for 
demonstration and validation.  

The two Use Cases are designed to demonstrate the feasibility of the ASTRID framework in two 
different domains, namely cloud applications, and network function virtualization; collectively, they 
cover all application scenarios identified in D1.1. The description explains how the Use Cases relate to 
the ASTRID architecture reported in D1.2, and which orchestration tools will be used to manage 
deployment and life-cycle operations in an automated way in the different domains. Based on the 
application design and the inventory of available software and tools, an implementation roadmap is 
depicted, and specific responsibilities are assigned to partners that will be involved in each Use Case. 
This will provide input to T4.2/4.3 for the implementation of the two Use Cases. 

The methodology for demonstration and validation is based on the selection of relevant attacks and 
threats for each Use Case, and the identification of a set of demonstration and validation scenarios. Each 
scenario is matched with key performance indexes and acceptance criteria, which have been selected 
and set according to the expected impact listed in the proposal. This description will drive the work in 
T4.5/4.6, which will set up the demonstration environments, and T4.7, which will carry out performance 
measurements.   
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2 Introduction 

2.1 Purpose and Scope 

The main purpose of this deliverable is to describe the two ASTRID Use Cases that will be used for 
demonstration and validation. Each Use Case is built around a virtual application or service, which is 
designed to be automatically deployed and managed over a virtualization infrastructure. The ASTRID 
framework is explicitly conceived to remain agnostic of the different development and orchestration 
models, so the Use Cases are conceived to demonstrate its applicability to two different domains, i.e., 
cloud applications and network function virtualization. The implementation of each Use Case consists 
of the following main activities: 

 design and development of the application/service; 

 enrichment of the application/service design with ASTRID elements (see D1.2); 

 development of domain-specific extensions for the ASTRID run-time (i.e., APIs to software 
orchestrators, see D1.2); 

 setup of the experimental environments; 

 functional validation and performance measurements. 

This document describes the overall architecture of the two Use Cases and the methodology for 
demonstration and validation. The architecture shows how the ASTRID run-time environment is 
integrated with orchestration tools and multi-site applications. Demonstration and validation are based 
on a set of scenarios, which takes into account relevant features of the framework, in terms of capability 
to detect/react to attacks or to carry out investigation. Target KPIs and acceptance criteria have been 
set according to the expected impact, so to clearly assess if and how much the project has achieved its 
objectives. It is worth noting that, according to the project’s objectives, the ASTRID framework is 
conceived to support more automation in the management of security aspects and better integration 
with emerging virtualization and orchestration technologies. In this respect, key performance aspects 
are mostly focused on the capability and speed to adapt to the evolving context rather than on the 
effectiveness of the detection algorithms (e.g., true positives, false negatives). 

2.2 Organization 

One of the main traits of ASTRID is more automation in management of security, through tight 
integration with existing orchestration frameworks. For this reason, Section 3 describes the overall 
architecture of the two Use Cases, by elaborating how the ASTRID run-time framework interacts with 
existing software orchestration tools. For the sake of completeness, a quick overview is included about 
related tools from the ASTRID partners and the open source community, including software 
orchestration and infrastructure virtualization. The overview covers all technologies that are currently 
used by partners for preliminary experimentation and demonstration (i.e., year-1 demos). A preliminary 
indication of benchmarking tools is also given at the end of this Section, which will be refined later on 
during the actual implementation of the Use Cases. 

Section 4 describes in detail the applications that will be used for each Use Case, including required 
software components and service graphs. The description also includes a development plan, which 
covers the identification of missing components and modules, as well as the infrastructures that will be 
used for deployment and testing. The plan assigns the responsibilities for development to specific 
partners. Finally, a list of relevant threats and attacks is discussed for each Use Cases, which should 
summaries the main security expectations; this is intended to maximize the effectiveness of the 
demonstration and validation effort within each application domain. 
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Section 5 describes a set of demonstration and validation scenarios, which will be used to evaluate 
the feasibility, functional correctness and performance of the ASTRID framework. These scenarios 
mainly address situational awareness but also cover mitigation and reaction cases. They are defined in 
terms of security features and main objectives, description of the expected trials and experiment 
conditions, target KPIs, and acceptance criteria. While the target KPIs denotes the performance level 
which are expected to support a very compelling exploitation strategy, the acceptance criterium is 
usually a looser threshold that gives the minimum value to achieve the project objectives and to 
motivate further investigation/development. 

It is worth mentioning that target KPIs and acceptance criteria largely depends on the complexity of 
the applications, so they cannot be considered as general figures that apply to all scenarios. They have 
been set according to the expected size of the applications at design time, so to appear compelling when 
compared to existing orchestration performance. They might be adjusted later on during the progress 
of the project, in order to address unexpected complexity of some components or any design or 
implementation modifications; any possible change will be properly motivated and will demonstrate 
the persistent improvement over other reference implementations. 

2.3 Relation to other WPs 

This deliverable describes the results of Task 4.1 “Definition of Validation and Demonstration 
Scenarios.” The definition of the ASTRID Use Cases is based on i) the preliminary concepts described in 
the proposal; ii) the application scenarios identified in D1.1 [1]; iii) the initial specification of the ASTRID 
architecture in D1.2 [2]. The work described in this document feeds the following activities in WP4, as 
described below: 

 the description of the cloud application and NFV service will be used for their development in 
Task 4.2 and 4.3, respectively; 

 the selected orchestrators will indicate which orchestration APIs are included in the ASTRID 
software framework (Task 4.4); 

 the overall description of each Use Case (including the deployment infrastructure) and the 
demonstration and validation scenarios will be used to:  

o identify the storyboard for functional validation that will be used for producing videos, 
whitepapers, and real-time demos in Task 4.5 and 4.6; 

o carry out performance measurement and analysis in Task 4.7. 
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3 Use Cases Architecture 

The ASTRID Use Cases are conceived to support situational awareness for specific applications that 
are already part of the business plans of one or more partners. Therefore, the main purpose is to enrich 
their current implementations (or their preliminary design, in case the implementation is not available 
yet) without affecting the main structure and without requiring large modifications. As a matter of fact, 
modifications to existing applications will be limited to security features that should have been 
integrated in any case (e.g., for compliance with the evolving regulations) or extended logging for 
improving the security base for detection and analysis. 

According to the project’s concept and objectives listed in D1.1 [1], the ASTRID framework will 
support more automation in the process of building situational awareness, leveraging DevOps 
paradigms and software orchestration technologies. The ambition is to avoid as much as possible human 
intervention in the deployment and configuration processes, in order to remove the possibility of 
common mistakes and carelessness, while giving more control to security experts in the design phase. 

As thoroughly described in D1.2 [1], the ASTRID framework is applied in two phases of the service life-
cycle: pre-deployment (which covers the necessary enhancement at design time to drive the automation at 
run-time) and run-time (which implements the real monitoring, detection, and reaction processes). The 
ASTRID Use Cases are expected to demonstrate the full workflow, including both the design and run-time 
phases. This will allow having direct indications about both technical performance and usability, which are 
key elements to support an effective communication and exploitation strategy beyond the project lifetime. 

Technically speaking, the ASTRID run-time framework is partially co-located within the 
application/service to be protected (i.e., local monitoring and inspection hooks), whereas detection and 
smart reaction capabilities are kept out of the main service-business-logic and can be shared by multiple 
applications and even tenants. Section 3.1 describes the Use Cases from a technical perspective, i.e., how 
the ASTRID architecture is integrated with the application/service orchestration. The following Sections 
provide a quick overview of the software orchestration technologies that will be used in the Use Cases 
and a preliminary list of (benchmarking) tools to simulate the cyber-attacks for demonstration and 
validation purposes. 

3.1 Integration with ASTRID Security Framework  

Figure 1 shows the ASTRID architecture, as defined in D1.21 [2]; the purpose and internal components 
of the two ASTRID- subsystems (pre-deployment and run-time) have been thoroughly discussed in that 
document. Here, we briefly recall that the pre-deployment subsystem includes several design activities to 
embed security hooks in the service topology, while the run-time subsystem carries out all configurations 
and detection tasks on the actual service instance of the tenant. The Security Dashboard is the human 
interface to supervise, control, and manage all the processes involved in the ASTRID framework. 

The implementation of the ASTRID framework (yellow frames in Figure 1) is covered by the activities in 
WP2 and WP3 (see Section 7.8 in D1.2). For the implementation of the Use Cases, it is necessary to give 
additional information about the greyed frames (right side of Figure 1), which concern the specific 
application/service and its orchestration. In particular, the implementation of the Use Cases is expected to 
provide the necessary API to the Orchestrator and monitoring and inspection hooks co-located with each VF. 

                                                             

 

1 The picture is indeed an updated version, which already includes some additional outcomes from Task 1.5. 
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Figure 1. ASTRID Framework Architecture 

Figure 2 shows the overall architecture for the ASTRID Use Cases. There are two Use Cases, covering 
“Cloud applications” and “NFV services”. In the first case, the reference infrastructure is the data 
centre, where Cloud Management Software (CMS) is used to manage the provisioning of virtual 
resources. In the second case, the infrastructure is provided by NFVI Point-of-Presence nodes, which 
can be in central offices of telco providers or at the network edge; according to the ETSI NFV-MANO 
framework, the management software for resource provisioning is called Virtual Infrastructure 
Manager (VIM). OpenStack can be used for both CMS and VIM; another very common options for the 
datacentres is the VMware vSphere suite. The usage of public cloud services (Amazon AWS, Google 
Cloud Service, Microsoft Azure) is yet another option. The CMS/VIM provision a full range of virtual 
resources- computing, networking, and storage being the most known services. The execution 
environment can be a virtual machine, a software container, or a combination of both. Virtual 
networking is usually based on internal segmentation made by hypervisors and VLAN/VxLAN/GRE 
tunnels between different servers. A common limitation of existing cloud solutions is the lack of 
interoperability between different installations, even when the same CMS is used. That means that a 
distributed application must implement its own mechanisms to provide Layer-2 connectivity between 
the components deployed in different virtualization infrastructures. Such mechanisms are often based 
on VPN technologies, which create overlays without strict control on QoS, confidentiality, and other 
management parameters. The usage of SDN controllers for wide-area networks (SD-WAN) is expected 
to create seamless end-to-end services in NFV infrastructures. 

Service orchestrators, in general, deploy a virtual application services in two steps: 

a) provisioning of the necessary virtual resources to create the execution environments (i.e., 
VMs/containers, virtual networks, storage space), through CMS/VIM; this usually also 
includes booting the base OS through disk images; 
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b) installation and configuration of the necessary software and libraries, through direct 
interaction with the base OS; this needs some management agents that must be already 
present in the base image (an SSH connection and an administrative account are enough to 
install and configure the software). 

 

Figure 2. Architecture for ASTRID Use Cases 

Service orchestrators are a relatively new technology, yet different products are already available 
from open-source communities (e.g., Juju, OpenBaton, Kubernetes, MAESTRO). Some of them already 
have their own APIs / NBIs for remote control and integration in higher-level management tools, 
whereas some only provide GUI/CLI interfaces for direct usage/control by humans. Remote APIs / NBIs 
are expected to be used to load a service graph, start/stop its deployment, modify the graph, trigger 
lifecycle events. 
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The implementation of the ASTRID Use Cases will integrate the ASTRID framework in existing 
orchestration frameworks, as graphically depicted in Figure 2. In the pre-deployment stage, the 
description of the service graph will be enriched to install the ASTRID components in the execution 
environment of each VF. These components will be both monitoring and inspection probes (indicates as 
“P” in Figure 2) and their control agents (“A”); the latter are used to change the configuration of the 
former, in order to make them programmable. Task 2.1 has already selected several existing 
components for probing and inspection (the ELK framework and the eBPF/Polycube suite) and will 
develop the necessary agents for their remote control. An additional component is necessary to create 
secure data and control channels between the local agents/probes and the Context Broker (“Proxy” in 
Figure 2). The definition of this component is not defined by the ASTRID framework, but it is left to each 
orchestrator; alternative architectural solutions have been already briefly discussed in D1.2. Each Use 
Case is therefore expected to use or extend the solutions it is already using for connecting service 
components deployed in different infrastructures. Examples of such technologies include VPN, OOR [3], 
ISTIO [4], OVS [5]. Depending on the specific solution, it may be necessary to co-locate a Proxy within 
each VF (as indicatively shown for the cloud use case) or a common Proxy for all components in the 
same infrastructure (NFV use case). The only mandatory requirement is the usage of encryption and 
integrity mechanisms to guarantee the reliability of the communication.  

The ASTRID Security Controller and Security Dashboard will be used to request specific management 
actions to the service orchestrator. Internally, the ASTRID framework will use a generic abstraction of 
common operations that are expected to be available, but each use case shall provide a translation 
between the internal representation and the real API / NBI available on the orchestrator. Such 
translations will be implemented as drivers or plugins, according to the documentation of the ASTRID 
framework, and will be part of the real implementations.  

3.2 MAESTRO Orchestrator 

MAESTRO is a Cloud/Edge Computing Applications Orchestrator that tackles the overall lifecycle of 
cloud/edge computing applications’ design, development, deployment, and orchestration. A set of novel 
concepts are introduced, including the design and development of cloud/edge computing applications -
based on cloud-native/microservices-based principles and the separation of concerns among the 
orchestration of the developed applications and the required network services that support them. 
MAESTRO follows a top-down approach where applications design and development leads to the 
instantiation of app required infrastructure (network/compute), over which cloud/edge computing 
applications can be optimally served. Different stakeholders are engaged in this process, however with 
clear separation of concerns among them. 

- Software developers are developing applications following a microservices-based approach 
where each application component can be independently orchestratable. Based on the 
conceptualization of a metamodel (application graph metamodel), they declare information and 
requirements -in the form of an application descriptor- that can be exploited during the 
applications deployment and operation over programmable infrastructure. Such information 
and requirements may regard capabilities, envisaged functionalities and soft or hard constraints 
that have to be fulfilled and may be associated with an application component or a virtual link 
interconnecting two components within an application graph.  

- Application/Service Providers are able to adopt the developed applications and specify 
policies and configuration options for their optimal deployment and operation over 
programmable infrastructure. Based on the provided application descriptor, 
application/service providers are able to design operational policies (elasticity efficiency or 
security policies) that have to be applied as well as declare further deployment constraints. 
Operational policies regard runtime adaptation of the execution mode of an application 
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component. Cloud/Edge computing applications orchestration is realised following a service-
mesh-oriented approach. 

- Infrastructure Service Providers are getting the application deployment request and 
proceeding to the appropriate reservation of resources for serving the application needs.  These 
actions are realized in an agnostic way to application service providers. However, through a set 
of open APIs, requests for adaptation of the infrastructure configuration may be provided. 

 

Figure 3. MAESTRO Architecture 

 

The MAESTRO reference architecture is divided into three distinct layers, namely the Applications 
Layer, the Applications’ Orchestration Layer, and the Infrastructure Management Layer. Separation of 
concerns per layer is a basic principle adhered towards the design of the overall architecture. The 
Applications Layer is oriented to software developers, the Applications Orchestration Layer is oriented 
to application/service providers and the Infrastructure Management Layer is oriented to infrastructure 
providers.  
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- The Applications Layer takes into account the design and development of cloud/edge 
computing applications, along with the specification of the associated deployment infrastructure 
requirements. The associated networking/computational requirements are tightly bound 
together with their respective applications’ graph, which defines the business functions, as well 
as the service qualities of the individual application.  

- The Applications’ Orchestration Layer supports the dynamic on-the-fly deployment and 
adaptation of the applications to its service requirements, by using a set of optimisation schemes 
and intelligent algorithms to provide the needed resources across the available multi-site 
programmable infrastructure. Deployment and runtime policies enforcement is provided 
through a set of optimisation mechanisms providing deployment plans based on high-level 
objectives and a set of mechanisms supporting runtime adaptation of the application 
components and/or network/security functions based on policies defined on behalf of a services 
provider. The Service mesh concept is adopted as a software management layer for controlling 
and monitoring internal, service-to-service traffic in microservices-based applications across 
multiple infrastructures. It consists of a data and a control plane. The data plane consists of a set 
of intelligent proxies deployed alongside the application software components supporting the 
provision of support/backing services (e.g. service discovery, load balancing, health checking, 
telemetry). The control plane manages the set of intelligent proxies based on distributed 
management techniques and provides policy and configuration guidance for all the running 
support/backing services. Policies definition for the activation and management of the set of 
required support/backing services is realised based on a policies editor, while policies 
enforcement is realised based on a rules-based management system. Advanced monitoring and 
analysis techniques are also applied for extracting insights that can be proven useful for 
application/service providers. 

- The Programmable Infrastructure Management Layer is responsible for setting up and 
managing the application deployment and operation over the programmable multi-site 
infrastructure. Network and security mechanisms activation and orchestration, as well as 
monitoring streams management, are realized. Such actions are triggered based on requests 
provided by the Applications’ Orchestration Layer through the specification of Open APIs. 

 

Following, a set of screenshots of the MAESTRO Orchestrator are provided, showing Dashboard as 
well as an already deployed application graph. From the Dashboard, a Developer can upload into the 
MAESTRO repository the Docker images, previously available in a personal registry, which will be used 
for composing the Application. Furthermore, runtime security policies can be defined per application 
graph instance, leading to the activation of a set of monitoring rules and alerts or mitigation actions, in 
cases of identification of a security threat. 

 



 

Page 17 of 48 

 

 
Deliverable D4.1 

 

 

Figure 4. MAESTRO Dashboard 

 

 

 

Figure 5. MAESTRO Application Graph Instance 



 

Page 18 of 48 

 

 
Deliverable D4.1 

 

3.3 OpenBaton Orchestrator 

Open Baton2 is the open source software solution developed by Technical University Berlin3 and 
Fraunhofer FOKUS, with the main objective of building a framework capable of orchestrating network 
services across heterogeneous infrastructural resources. The implementation of OpenBaton follows as 
much as possible the current NFV MANO architectural specification by ETSI. It provides:  

 an NFVO and the message bus as central components,  

 a Generic VNFM able to manage any kind of VNFs using a lightweight EMS,  

 one or more specific VNFMs, integrated via VNFM adapters,  

 different drivers for interoperating with external VIMs and monitoring systems,  

 several plug-in modules to extend the core functionalities (e.g., an FMS, an AES, and a NSE),  

 

Figure 6. OpenBaton High-level Architecture 

                                                             

 

2 https://openbaton.github.io/index.html 

3 https://www.av.tu-berlin.de/research_development/tools/open_baton/ 
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The high-level architecture of the Open Baton framework is shown in Figure 6, and a comprehensive 
list of features supported is provided as follows: 

 Installation, deployment, and configuration of a large number of VNFs and NSs (i.e., vIMS, vEPC, 
etc.). 

 Management of a multi-site NFVI Point of Presence, supporting heterogeneous virtualization and 
cloud technologies (i.e., OpenStack, Docker, etc.). 

 Ensures multi-tenancy at the infrastructure level. 

 Provides a Generic VNFM. 

 Integrates with existing VNFMs (could be easily plugged either directly implementing the Or-
Vnfm interface exposed by the NFVO, or via SDK available in different programming languages 
such as Java, Python, and Go).  

 Supports runtime operations fulfilling the need of the FCAPS management model integrating 
external OSS systems, e.g. fault management (F) and auto-scaling (C). 

 

The extreme required flexibility, led to the implementation of a loosely coupled microservice-oriented 
architecture, allowing each OpenBaton individual component to be implemented with the most suitable 
programming language (most of them have been implemented using Java). Figure 7 summarizes the 
different available OpenBaton components, their programming languages and project names on the 
GitHub4. The main NFVO component has been implemented as eight separate Gradle5 modules: 

 api: providing the REST APIs exposed to the different consumers (being a human, or another 
component, like the Dashboard or the CLI). 

 cli: Providing an implementation of a simple CLI used as part of the console of the NFVO.  

 common: Including all the common source code across different other modules. 

 core: Implementing the orchestration logic.  

 repository: Including all the Java Entities which are used by other modules for persisting 
information in the database.  

 security: Comprising all the classes which are dealing with authentication and authorization. 

 tosca-parser: Including all the classes used for parsing TOSCA templates. 

 vnfm: Providing the interfaces for communicating with available VNFMs 

 

                                                             

 

4 https://github.com/openbaton 

5 https://gradle.org/ 
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Figure 7. OpenBaton Components and GitHub Project Names 

 

The dashboard represents a comprehensive web-based GUI exposing a set of web pages allowing end 
users to manage infrastructure resources and (network) services. The dashboard has been implemented 
using Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and Javascript. The source 
code has been included as a git submodule inside the NFVO project so that after starting the NFVO, the 
dashboard is automatically available. Figure 8 shows a screenshot of the overview page of the dashboard 
available immediately after login. 
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Figure 8. OpenBaton Dashboard 

Last but not least, Open Baton provides several installation mechanisms including Docker (to provide 
an easy way to containerize services and compose more complex services in a template-based manner) 

3.4 Kubernetes6 

The Kubernetes orchestrator is the third orchestrator used in ASTRID for demonstration and 
validation. This section provides a high-level view of this software, originally developed by Google and 
later released in the open-source domain. 

Kubernetes is an open source system for automating deployment, scaling, and management of 
containerized applications. Kubernetes enables to quickly deploy containerized applications, scaling it 
according to the user needs, without having to stop anything in the process. It is made to be portable, 
extensive and self-healing, granting an easier management from people who have to administrate the 
system. 

General Architecture 
The system is built around the following four key concepts: 

 Nodes 
 Pods 
 Deployments 
 Services  

The high-level architecture of a Kubernetes cluster (which is, in Kubernetes terminology, the 
equivalent of a datacenter) is depicted in the figure below. 

                                                             

 

6 This Section has been partially inspired by https://justanotherdevblog.com/kubernetes-an-overview-
bf47b0af1865. 
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Figure 9. High-level Overview of a Kubernetes Cluster 

Nodes 

Nodes are the (either physical or virtual) machines on Kubernetes. When reading the statuses of a 
Node, the following information can be obtained: 

 Addresses: hostname, internal and external IP addresses from the Node. 
 Condition: there are two conditions: OutOfDisk and Ready. OutOfDisk will be true when there is 

insufficient space to add new pods. Ready will tell if the Node is healthy and ready to accept 
pods. If the Controller cannot reach the Node for 40 seconds the Ready condition is set to 
Unknow. 

 Capacity: the resources available in the node, such as CPU, memory and the maximum number 
of pods allowed. 

 Info: general information about the node, such as program versions and OS name. 

Node Controllers are the components to control the nodes. Their responsibility is to assign a CIDR 
block to the node when it is registered, which will ensure the proper IP is set. They also keep track of 
the relation between the list of nodes available and the list of machines available: when a node is deemed 
unhealthy the Controller will check if the machine is unhealthy as well. If that is the case, the node is 
removed from the list of available nodes. 

Pods 

Pods are composed of a group of one or more containers, the shared storage for them and their 
options. Kubernetes supports many types of containers, being Docker the most common one. Every 
container inside a pod will have the same IP address. As expected in this case, they can found themselves 
by connecting to localhost (i.e., the loopback network interface). However, this is valid only on 
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containers running on the same pod: if we have two containers located in two different pods they will 
have different IPs and cannot find each other using localhost. 

Pods should not be treated as persistent entities. In a case of some failure (e.g. node failure) they will 
be destroyed, which means they cannot be used as a place to hold vital information. Data that needs to 
outlive the pod should be stored in volumes. Since pods are intended to be ephemeral it is important to 
understand their lifecycle. 

Each pod will have a phase, which can be described as a high-level summary of the current status of 
the pod in the lifecycle. A phase can assume the following values: 

 Pending: the pod was already accepted by Kubernetes, but that are images still being created. 
 Running: all of the containers have been created and the pod is bound to a node. 
 Succeeded: the pod has terminated all containers with success. 
 Failed: the pod has terminated and at least one container failed. 
 Unknown: it was not possible to obtain the status of the pod. 

Deployments 

Deployments are used to make updates on Pods. They can be used to bring up new Pods, change the 
image version of a container and even recreate the previous state if something goes wrong. When 
creating a Deployment, users can define a desired state and Kubernetes will keep our environment in 
that desired state. 

Let’s pretend that we want to make sure we always have 3 pods running a web server. This can be 
achieved by creating a Deployment that defines the replicas property as 3. What Kubernetes does when 
it runs this Deployment is to create 3 Pods with the given configuration of the web server. If for some 
reason one of the pods is destroyed Kubernetes will automatically bring up a new one. This will make 
our desired state of 3 replicas be achieved even when some problems occur. 

The status of the deployment can be monitored to see if everything is performing according to what 
is expected. When looking for a Deployment status, the following information is available: 

 Desired: how many pods were defined in the desired state. When the deployment is finished the 
number of current pods should be equal to this column. 

 Current: indicates the total replicas the Deployment manages. 
 Up-to-date: how many pods have the latest template. For instance, the container’s image version 

is changed and the Deployment is executed again, a pod will only be considered up-to-date when 
the deployment finishes. 

 Available: how many pods are in the Ready status. 

Services 

Imagine that there are two services: ServiceA and ServiceB, the former needing to communicate with 
the latter. Since Pods are ephemeral we cannot use them to be the ServiceB interface. If a Pod ends up 
being terminated the reference to it is no longer valid and the environment will not work properly 
anymore. This requires something that is able to act as an interface and that will not be destroyed. 
Kubernetes achieves this using Services. 

A Kubernetes Service consist of a set of Pods and a policy that defines the access control. Services can 
have label selectors, which are commonly used to invoke actions over the right subset of pods. This 
allows users to select a set of instances based on the given information. 

When publishing Kubernetes Services, users can define how they can be exposed. For instance, a 
backend service usually is going to be accessible inside the local network, while a frontend service needs 
to be available outside the cluster. The possible types of Service we can define are listed below: 
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 ClusterIP: the service is going to be exposed inside the cluster, with a local IP, and will not be 
reachable outside the cluster. This is the default option. 

 NodePort: exposes the service on the given port, using the node IP. For instance, if the Node runs 
on 10.0.15.5 and the NodePort is 4567, we can reach the service on 10.0.15.5:4567. 

 LoadBalancer: exposes the service using a cloud provider’s load balancer. 
 ExternalName: the service is going to be exposed using the name configured on this property 

(e.g. mydomain.com). 

Key Design Principles7 
Kubernetes is designed on the principles of scalability, availability, security, and portability. It 

optimizes the cost of infrastructure by efficiently distributing the workload across available resources. 
This section will highlight some of the key attributes of Kubernetes. 

Workload Scalability 

Applications deployed in Kubernetes are packaged as microservices. These microservices are 
composed of multiple containers grouped as pods. Each container is designed to perform only one task. 
Pods can be composed of stateless containers or stateful containers. Stateless pods can easily be scaled 
on-demand or through dynamic auto-scaling. Kubernetes 1.4 supports horizontal pod auto-scaling, 
which automatically scales the number of pods in a replication controller based on CPU utilization. 
Future versions should support custom metrics for defining the auto-scale rules and thresholds. 

Hosted Kubernetes running on Google Cloud also supports cluster auto-scaling. When pods are scaled 
across all available nodes, Kubernetes coordinates with the underlying infrastructure to add additional 
nodes to the cluster. 

An application that is architected on microservices, packaged as containers and deployed as pods can 
take advantage of the extreme scaling capabilities of Kubernetes. Though this is mostly applicable to 
stateless pods, Kubernetes is adding support for persistent workloads, such as NoSQL databases and 
relational database management systems (RDBMS), through pet sets; this will enable scaling stateless 
applications such as Cassandra clusters and MongoDB replica sets. This capability will bring elastic, 
stateless web tiers and persistent, stateful databases together to run on the same infrastructure. 

High Availability 

Contemporary workloads demand availability at both the infrastructure and application levels. In 
clusters at scale, everything is prone to failure, which makes high availability for production workloads 
strictly necessary. While most container orchestration engines and PaaS offerings deliver application 
availability, Kubernetes is designed to tackle the availability of both infrastructure and applications. 

On the application front, Kubernetes ensures high availability by means of replica sets, replication 
controllers and pet sets. Operators can declare the minimum number of pods that need to run at any 
given point of time. If a container or pod crashes due to an error, the declarative policy can bring back 
the deployment to the desired configuration. Stateful workloads can be configured for high availability 
through pet sets. 

For infrastructure availability, Kubernetes has support for a wide range of storage backends, coming 
from distributed file systems such as network file system (NFS) and GlusterFS, block storage devices 
such as Amazon Elastic Block Store (EBS) and Google Compute Engine persistent disk, and specialized 

                                                             

 

7 This Section has been partially inspired by https://thenewstack.io/kubernetes-an-overview/. 

https://thenewstack.io/kubernetes-an-overview/
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container storage plugins such as Flocker. Adding a reliable, available storage layer to Kubernetes 
ensures high availability of stateful workloads. 

Each component of a Kubernetes cluster — etcd, API server, nodes— can be configured for high 
availability. Applications can take advantage of load balancers and health checks to ensure availability. 

Security 

Security in Kubernetes is configured at multiple levels. The API endpoints are secured through 
transport layer security (TLS), which ensures the user is authenticated using the most secure 
mechanism available. Kubernetes clusters have two categories of users — service accounts managed 
directly by Kubernetes, and normal users assumed to be managed by an independent service. Service 
accounts managed by the Kubernetes API are created automatically by the API server. Every operation 
that manages a process running within the cluster must be initiated by an authenticated user; this 
mechanism ensures the security of the cluster. 

Applications deployed within a Kubernetes cluster can leverage the concept of secrets to securely 
access data. A secret is a Kubernetes object that contains a small amount of sensitive data, such as a 
password, token or key, which reduces the risk of accidental exposure of data. Usernames and 
passwords are encoded in base64 before storing them within a Kubernetes cluster. Pods can access the 
secret at runtime through the mounted volumes or environment variables. The caveat is that the secret 
is available to all the users of the same cluster namespace. 

To allow or restrict network traffic to pods, network policies can be applied to the deployment. A 
network policy in Kubernetes is a specification of how selections of pods are allowed to communicate 
with each other and with other network endpoints. This is useful to obscure pods in a multi-tier 
deployment that shouldn’t be exposed to other applications. 

Portability 

Kubernetes is designed to offer freedom of choice when choosing operating systems, container 
runtimes, processor architectures, cloud platforms, and PaaS. 

A Kubernetes cluster can be configured on mainstream Linux distributions, including CentOS, CoreOS, 
Debian, Fedora, Red Hat Linux and Ubuntu. In fact, a Kubernetes cluster can control even non-Linux 
nodes, such as Windows hosts. It can be deployed to run on local development machines; cloud 
platforms such as AWS, Azure and Google Cloud; virtualization environments based on KVM, vSphere, 
and libvirt; and bare metal. Users can launch containers that run on Docker or rkt runtimes, and new 
container runtimes can be accommodated in the future. 

Through federation, it is also possible to mix and match clusters running across multiple cloud 
providers and on-premises. This brings the hybrid cloud capabilities to containerized workloads, hence 
enabling customers to seamlessly move workloads from one deployment target to the other. 

3.5 Virtualization Infrastructures and Management Software - OpenStack 

OpenStack8 is a cloud operating system that controls large pools of compute, storage, and networking 
resources throughout a datacentre. Users can manage it through a dashboard that gives administrators 
control, while empowering their users to provision resources through a web interface, through 
command-line tools or a RESTful API. 

                                                             

 

8 https://docs.openstack.org/stein/ 
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Figure 10. OpenStack Map9 

OpenStack was founded on 21st July 2010 by Rackspace, NASA, and further 25+ partners. More than 
160 companies and 3000 developers have contributed to the project so far. OpenStack has a strong 
ecosystem with different OpenStack-powered products/services in the market and hundreds of the 
world’s largest brands utilize it to run their businesses. As shown in Figure 10, OpenStack has a modular 
architecture with various code names for its components (e.g. Nova – Compute, Neutron – Networking, 
Cinder – Block Storage, Keystone - Identity). Figure 10 gives an “at a glance” view of the OpenStack 
landscape to see where those services fit and how they can work together. 

After the introduction of Network Function Virtualization (NFV) by ETSI, OpenStack has emerged as 
a key virtual infrastructure platform for the management and orchestration infrastructure (NFV MANO). 
In most of the NFV deployments, OpenStack is used at the VIM (Virtual Infrastructure Manager) layer to 
give a standardized interface for controlling, monitoring and assessing all resources within NFV 
infrastructure. VIMs are critical to realize the business benefits enabled by NFV as they coordinate the 
physical and virtualised resources necessary to deliver network services. In ASTRID, OpenStack will be 
used in both ASTRID use cases to provide managed virtual infrastructures. 

3.6 Benchmarking Tools – Kali Linux 

In the field of cybersecurity, there are many security benchmark/testing/hacking tools available. Kali 
Linux10 is the most common solution with a large number of preinstalled tools from various different 
niches of the security and forensics fields. Kali Linux is created and maintained by “Offensive Security” 
who focuses on advancing security through tools and education. 

                                                             

 

9 https://www.openstack.org/software/ 

10 https://tools.kali.org/ 
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As shown in Figure 11, Kali Linux can be used to support different requirements including information 
gathering, vulnerability analysis, stress testing, reverse engineering, and includes forensics tools as well 
as an abundance of attack tools (e.g. VoIP, wireless, web, password, sniffing and spoofing). 

 

Figure 11. Kali Linux Tools Listing 

Kali Linux includes the Metasploit Framework11, an open source penetration testing and development 
platform that provides exploits for a variety of applications, operating systems, and platforms. This Ruby-
based Framework contains a suite of tools that can be used to test security vulnerabilities, enumerate 
networks, execute attacks, and evade detection. Users can leverage the power of the Metasploit Framework 
to create additional custom security tools or write their own exploit code for new vulnerabilities. 

 

Figure 12. Metasploit Framework 

                                                             

 

11 https://www.metasploit.com/ 
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4 Use Cases Description 

4.1 Security Orchestration in Cloud Environment 

4.1.1 Overview 

The first Use Case relates to the provision of a secure voice communication service (VoIP). This 
scenario is representative of emerging cloud applications that process sensitive data and need proper 
cyber-security solutions (including privacy, confidentiality, detection of threats and compromised 
software) for safeguarding the interest of users. With most major telecommunications carriers currently 
in the process of readying Voice-over IP (VoIP) services for mass deployment, it’s clear that IP telephony 
is finally headed for prime time. However, the promise of mass VoIP consumption also increases the risk 
of widespread security violations, spawning a new sense of urgency to fill in potential security gaps now 
before hackers wreak havoc on public and corporate voice networks. 

The Secure VoIP Communication (SeVoC) application is an application that enables encrypted voice 
communication between application users. SeVoC integrates with the system dialer to provide a 
frictionless call experience but uses ZRTP to set up an encrypted VoIP channel for the actual call. It is 
designed specifically for mobile devices, using audio codecs and buffer algorithms tuned to the 
characteristics of mobile networks and using push notifications to maximally preserve your device’s 
battery life while still remaining responsive. Even more, it provides end-to-end encryption for your calls, 
securing your conversations so that nobody can listen in. It’s easy to use and supports functions just like 
the normal dialer that most people are accustomed to. The SeVoC application uses a normal mobile 
number for addressing, so there’s no need to have yet another identifier or account name; by knowing 
someone’s mobile number, the end user knows how to call them using the mobile application for 
Android. When a call is received, the phone will ring just like normal, even if it is asleep. Some of the 
features of the app: 

 Conference Mode: Stands for encrypted conference call, allowing more than two users to speak 
together simultaneously. 

 Message: Sending an encrypted message to your partner or a friend knowing that only the actual 
receiver is able to read it. 

 Repository: Every user has his/her own electronic safe online. You can choose to keep any 
message or call you have recorded, secure and encrypted to the server. Even if your phone is 
stolen or broken you are able to access your data from a web browser or by installing the SeVoC 
on a new device. 

 Some other features are: voicemail, missed call notification, delivery report of message, hide 
number during a call or send a private message.  

Furthermore, the Secure VoIP Communication application gives the ability to record the conversation 
during a call or even forward a call to another SeVoC user. One major asset is that regardless of the 
feature(s) the client uses, communication safety is guaranteed. 

4.1.2 Service Topology 

In the following figure, it is depicted the SeVoC application graph and the components that it is 
comprised of. 
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Figure 13. Use Case #1 Service Graph 

The Signalling Handler is the component that handles all the signalling that is required during the 
operation of a VoIP client. This includes signalling regarding the connection status, the call establishment, 
the hang-up process, etc. As a component, it is dependent on the NoSQL repository and a PUSH server in 
order to be able to send synchronous notifications to a mobile device. When a call request is accepted by 
both parties, then a Call Handler undertakes the work of maintaining a valid channel. 

Exposed Endpoints Signal Management: It exposes a publicly available endpoint (sigman) that 
is consumed directly by the mobile clients. 

Required Interfaces 

  

i. NoSQLStorage: regards the scalable by design repository used to hold 
the details of users and is covered by a component such as Mongo 
(mongotcp). 

ii. PushServer: regards the component that notifies the clients regarding 
the establishment and termination of a call (push). 

iii. TURNServer: regards the component that undertakes the actual 
establishment of a UDP channel. 

Configurations 
parameters 

ManagementPort: The initial port for handling the various signals 

Metrics SignalsPerSecond: The metric provides a metric regarding the throughput 
of handled signals. 
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The Call Handler is responsible for establishing a UDP connection between two endpoints that may 
be NATed. This functionality is essential for VOIP communication use cases where two parties can 
belong to different network zones. 

Exposed Endpoints TURNServer: Call handler exposes a “TURN” endpoint to any component that 
requires connectivity. A TURN server is a NAT traversal server and gateway. 
It can be used as a general‐purpose network traffic TURN server and 
gateway, too. Online management interface (over telnet or over HTTPS) for 
the TURN server is available. The implementation also includes some extra 
experimental features. 

Configurations 
parameters 

  

i. StartPort: The initial port for the UDP handshakes (minimum 1100) 
ii. MaxAmountOfSessions: The maximum amount of sessions that can be 

supported 

Metrics 

  

i. ActiveCalls: The main component metric used regards the ActiveCalls 
that refers to the number of calls that are handled. Such a metric is used 
during policies definition for tackling performance aspects of the 
component. 

ii. ActiveCallsPerMinute: The metric provides a metric regarding the 
throughput of established calls. 

 

The Push Server is responsible for providing push notifications on specific clients that are behind a 
NAT. In the frame of call management, PUSH notifications are used for call establishment and call 
termination. 

Exposed Endpoints PUSHMessageToReceiver: The component exposes only this interface 
(push). The current implementation is used in order to send an SMS message 
to a VoIP client. Other Push modalities can be supported in the future (e.g. 
Google Cloud Platform, AWS) 

Configurations 
parameters 

PushModality: The type of PUSH modality is selected through this variable. 
Currently, only SMS modality is available. 

Metrics MessagesPerSeconds: The metric provides a metric regarding the 
throughput of delivered messages. 

 

The NoSQL repository and the Registration component are used to persist all required information 
of a user. 

 

Security Features 

With regards to security, SeVoC makes use of the current state-of-the-art encryption algorithms and 
cryptographic protocols in order to provide users the best possible effort among security issues. In 
specific the following algorithms and protocols are implemented: 

 Data Encryption Algorithm: Advanced Encryption Standard 256 bit (AES-256) 
The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for 
both encrypting and decrypting the data. AES is a winner data encryption-algorithm among 
many Cryptography Research and Evaluation Committees including CRYPTREC, NESSIE and 
NSA. 
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 Curve25519: it is an elliptic-curve cryptography algorithm (ECC) offering 128 bits of security 
and designed for use with the elliptic curve Diffie–Hellman (ECDH) key agreement scheme. It is 
one of the fastest ECC curves and is not covered by any known patents. 

 HMAC as cryptographic primitive: stands for Hashed or Hash-based Message Authentication 
Code. It is a MAC algorithm derived from cryptographic hash functions. HMAC is a great resistant 
towards cryptanalysis attacks as it uses the Hashing concept twice. HMAC consists of twin 
benefits of Hashing and MAC and thus is more secure than any other authentication codes. 

 Cryptographic Protocol: Secure Sockets Layer (SSL) SSL are cryptographic protocols that 
provide communication security over the Internet. SSL uses symmetric encryption for 
confidentiality (AES-256 in our solution). 

 Cryptographic Key-Agreement Protocol: Zimmermann Real-time Transport Protocol (ZRTP). 
ZRTP is a cryptographic key-agreement protocol to negotiate the keys for encryption between 
two endpoints in a Voice over Internet Protocol (VoIP) phone telephony call based on the Real-
time Transport Protocol. 

 Voice Encryption Protocol: Secure Real-time Transport Protocol (SRTP) 
The Secure Real-time Transport Protocol (or SRTP) defines a profile of RTP (Real-time 
Transport Protocol), intended to provide encryption, message authentication, and integrity, and 
replay protection to the RTP data in both unicast and multicast applications. 

4.1.3 Specific Threats 

Voice communications are largely used for quick and often informal interaction, without the overhead 
of creating written documents or other media files. The digitalization and transmission over packet 
networks represent a more cost-effective technology with respect to traditional circuit-switching, but 
also introduce additional security concerns due to the usage of public, multi-service, and multi-tenancy 
infrastructures. 

The transmission of voice packets over public networks makes VoIP vulnerable to several attacks that 
typically do not affect private infrastructures. The first security matter is confidentiality because packets 
travel across a number of different domains, some of which may be untrusted or even hostile. 
Encryption is commonly used by all VoIP services today, this Use Case not being an exception, so 
eavesdropping is a minor concern in this case. However, the persistent vulnerabilities in common 
routing and switching protocols for the Internet make spoofing, man-in-the-middle, and similar attacks 
real threats for this kind of applications, both in the core and access networks. In addition, availability 
and quality of service can be easily undermined by vicious types of (D)DoS attacks, which jeopardize the 
robustness and the stability of the app. The ASTRID framework performs statistical measures and 
packet inspection locally, hence collecting a pervasive security context that allows detecting missing 
packets and other forms of anomalies in the traffic flow. This provides a very effective solution which 
also covers the case when the discrete components of the application are deployed in different 
infrastructures. 

The usage of the public cloud allows to scale the application according to the actual workload but also 
brings a number of threats due to multi-tenancy and lack of a strong security perimeter. Indeed, 
ensuring trustworthiness and integrity of a VoIP call is one of the most crucial aspects of the application, 
at least to guarantee confidentiality and privacy to its users. In that sense, there has to be a mechanism 
that not only guarantees the trustworthiness of the application’s components per se but also verification 
and validation of their integrity and the graph behaviour upon instantiation. This functionality will be 
based on the capability to analyse system calls, so to provide static analysis and validation of the 
network functions as well as dynamic real-time behavioral analysis of the complete network service. 

  

https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
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One very simple pre-requisite for integrity and availability of the application is strict control over 
access from the network. Firewalling is a basic yet effective security mechanism, also prone to 
vulnerabilities due to wrong or missing configurations. With dynamic services, ensuring the consistency 
of the rules across the service is a challenging task when managed by humans. The ASTRID framework 
envisions both the ability to enforce filtering rules locally and to compute the correct set of rules to be 
applied at each virtual function. 

Table 1. Summary of Main Threats for the VoIP Use Case 

Source Threats ASTRID improvements 

Public Internet DoS, spoofing, redirection Custom network traffic statistics and analytics 

Public cloud Unauthorized access Automatic firewall configuration 

Public cloud Service integrity Remote attestation 

End users Illegal activities 
Collection of logs and records for forensic analysis 
Interception and redirection of traffic flows 

VoIP applications are likely to provide public communication services and should not represent a way 
to escape security controls already present in legacy telco infrastructures. As a matter of fact, voice 
communications are largely used for illegal activities, based on the fact that they are more difficult to 
detect than direct meetings, without violating the privacy of individuals. Illegal activities must be 
detectable, investigated, and prosecuted according to existing regulations and practice. Service 
providers are therefore expected to comply with local regulations that demand evidence of calls and 
interception capabilities upon authorization of relevant law enforcement agencies. ASTRID will support 
forensics and legal investigation by collecting logs from the VoIP components and keeping them in 
secure repositories. In addition, the elasticity of the cloud model will easily allow the re-direction of 
traffic flows to external monitoring agents. Table 1 briefly summarizes the main covered threats. 

4.1.4 Implementation Plan 

The implementation of this Use Case will follow the general workflow devised by the ASTRID 
architecture (D1.2) [2], including pre-deployment enrichment and run-time demonstration and 
validation. 

Pre-deployment enrichment (May 2019 – November 2020) 

As soon as the Secure VoIP Communication application gets into the Pre-deployment subsystem, an 
enhanced version of the original service graph will be created. This phase will include the following 
activities: 

i. Modification of the Call Handler so to enable duplication of call traffic towards an external 
entity. Redirection will be a management action triggered by the service orchestrator, upon 
request from the ASTRID Security Controller (Task 4.2). 

ii. Implementation of an additional component for legal interception. It acts as a gateway, which 
receives duplicated traffic and stores it for offline access and evidence. 

iii. The static software analysis will evaluate the source code of each component of SeVoC (mainly 
Signalling Handler, Call Handler, Push Server) against vulnerable outdated and un-patched 
code (Task 4.5). 
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iv. Registration of call records (time, duration, caller identity and location, callee identity and 
location) and performance measures that can be used to detect anomalies (Task 4.2), which 
will be integrated with ASTRID monitoring hooks (Task 4.5), especially for the Signalling 
Handler which acts as the brain of the application. 

v. Development of eBPF programs to collect network statistics, to trace system calls, to detect 
traffic patterns, to filter packets. These will cover the range of attacks envisioned by the 
demonstration and evaluation plans (see Section 5, Task 4.5). 

vi. Development of the analytics toolkit for network threats envisioned by the demonstration and 
evaluation plans (see Section 5, Task 4.5). 

Run-time demonstration and validation (December 2019 – April 2021) 

The VoIP application will be integrated with the ASTRID framework developed in WP2 and WP3, and 
integrated into Task 4.4. Specific activities towards this objective include: 

i. Implementation of the REST APIs on the MAESTRO orchestrator and the ASTRID adapters to 
use the APIs, according to the model that will be defined by Task 2.1 

ii. Set-up of the demonstration and validation environment, including the mobile terminals and the tools 
to simulate the attacks described in the demonstration and evaluation plans (Section 5, Task 4.5). 

The identification of volumetric DoS attacks is especially challenging in this context because it may 
concern the provider’s infrastructure or other tenants, so it does not necessarily correspond to large volume 
of packets within the service. However, the overall network congestion caused by a volumetric DoS degrades 
the transmission of all packets, therefore affecting the service performance. Monitoring the metrics by which 
the VoIP service is measured is necessary to prevent the degree of deviation from the norm that will cause 
service deterioration. These measurements include latency, jitter, lost packets, MOS, and R-value. 

i. Latency — the measure of time delay in moving packets from the transmitting UE to the receiving 
one; the maximum duration of latency that a VoIP system can sustain without deterioration of 
service is 150 ms in any one direction. In SeVoC  the target value for latency will be <= 30ms. 

ii. Jitter — a variation in packet transit delay caused by queuing, congestion, timing drifts, route 
changes and serialization effects on the path through the network; the maximum allowable duration 
of jitter is 40 ms before deterioration occurs. In SeVoC  the target value for jitter will be  <= 20ms. 

iii. Lost packets — the failure of one or more packets to reach their destination across the network; the 
maximum allowable packet loss is less than 1% for WANs and less than 0.05% for LANs. Target value is 0.03%. 

iv. MOS — mean opinion score is a subjective measure of voice quality that gives a numerical indication 
of the perceived quality of the media received; MOS is expressed as a number from 1 to 5, with 1 
(bad) being the worst and 5 (excellent) being the best. A tolerated voice call is around 2.5 MOS. 
SeVoC’s target for MOS is 3.5-4.0. 

v. R-value — a quantitative expression of the subjective quality of speech in communication systems for 
digital networks that carry VoIP or for which VoIP is under consideration; R-values range from 1 (worst) 
to 100 (best), and the metric is often used in conjunction with MOS, although the R-value is considered a 
more accurate portrayal of the effects of packet loss and latency. Targeted R Value for SeVoC is <= 90. 

All the protection and mitigation actions (based on rules on runtime policies) that are going to be 
applied in the SeVoC app will start from the Security Dashboard where the security provider can select 
detection algorithms, as well as define tailored reaction and mitigation strategies. In the Figure below, 
it is depicted a security rule that is triggered from the security analyst through ASTRID platform and 
enforces the blockage of traffic from the Signalling Handler to one of the three UEs. 

Table 2 lists the required activities and responsible partner to implement the Use Case, together with 
a target deadline. These activities will be carried out in Task 4.2 and Task 4.5. 
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Table 2. Implementation Plans for Use Case #1 

Component / Feature Partner 
WP / 
Task 

Traffic duplication (legal interception) UBITECH T4.2 

Static software analysis (remote attestation) DTU/SURREY WP3 

Extended call records UBITECH T4.2 

Logstash beat (log collection) CNIT WP2 

eBPF programs (local inspection and monitoring) UBITECH/POLITO WP2 

Analytics toolkit (detection of network threats) ETI/UBITECH WP3 

Firewalling policy (automatic configuration of rules) POLITO/UBITECH WP2 

Use activity and forensics data collection (automatic collection of logs) INFO WP2 

Legal Interception (automatic collection of traces) INFO WP2 

MAESTRO APIs (Northbound interface of service orchestrator) UBITECH T4.4 

 

 

Figure 14. Use Case #1 within ASTRID Framework 
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4.1.5 Deployment Infrastructure 

The SeVoC application will be deployed over multiple cloud installations, so to demonstrate the 
applicability of the ASTRID framework to multi- and cross-cloud environments. The cloud installations 
will be provided by UBITECH and CNIT. UBITECH will host the demonstrator for demonstration and 
functional validation, whereas CNIT will host part of demonstrator to carry out validation over more 
realistic scenarios. 

The deployment and life-cycle of the enriched service graph will be managed by MAESTRO, which will 
also perform mitigation and reaction operations when triggered by the ASTRID Security Controller or 
Security Dashboard. An indicative deployment plan is shown in Table 3. 

Table 3. Preliminary Deployment Plans 

Component Infrastructure 

Signaling Handler UBITECH 

NoSQL Persistence Engine UBITECH 

Push Server UBITECH 

Service Registration & Activation UBITECH 

Call Handler UBITECH/CNIT 

VoIP clients UBITECH 

MAESTRO orchestrator UBITECH 

ASTRID orchestrator (run-time) UBITECH/CNIT 

ASTRID Security Dashboard UBITECH 

 

UBITECH’s Cloud infrastructure includes more than 100 cores (about 400 vCPUs) at 2.4GHz with 
virtualization capabilities. Currently, KVM-based and ESXI-based hypervisors are used, OpenStack is 
used as Infrastructure-as-a-Service (IaaS) API. It should be noted that every 6 months the head version 
of OpenStack is adopted. The computational infrastructure is complemented by a Network Attached 
Storage (NAS) with an effective capacity of 25 Tb of data (in RAID 6 mode). Furthermore, a secondary 
NAS with an effective capacity of 20 Tb of data on a RAID 5 mode that can extend, on demand, the storage 
capacity of the aforementioned experimental Cloud Infrastructure to a total of 45 Tb of effective data 
storage. On top of the storage a Ceph-based API is used in order to offer storage-as-a-service 
functionality. Such functionality is exposed in various modalities such as S3-based object storage, block 
storage, and POSIX-based filesystem. Also, UBITECH possesses plenty of UEs with different Android 
versions (6.0, 7.0, 8.0).  

CNIT’s cloud infrastructure is built of 4 Intel KP-S2600KPR boards with 2x Intel E5-2660v4 @ 2.00 
GHz and 128 GB of RAM, for a total of 112 physical cores and 512 GB RAM available to VMs. A dedicated 
controller node is run on a Intel KP-2600KPR board with 2x E5-2630v4 @ 2.20 GHz and 64 GB RAM. 
OpenStack Rocky is the current CMS for IaaS, using KVM/QEMU hypervisors. Block storage is provided 
on an iSCSI network, currently hosting 8 TB of data in hardware RAID 1 mode (mirroring).  
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4.2 Security Orchestration in NFV Environment 

4.2.1 Overview 

Mobile network architecture evolution is continuing toward the fifth generation (5G). The 5G 
networks are expected to have a high-speed data transfer, extremely low latency and ubiquitous 
connectivity support. Additional key driving factors will enter the scene including the convergence of 
mobile network and Cloud Computing or the support of Internet of Things (IoT) applications from 
vertical industries (e.g., automotive, healthcare, energy). In addition to that, to support new 
requirements, mobile operators are currently considering “network softwarization” for their network 
infrastructures by investigating several enabling software-related technologies such as Network 
Functions Virtualization (NFV) and Software Defined Network (SDN). With NFV, applications that were 
previously coupled to proprietary hardware can now be virtually instantiated and deployed on generic 
commercial off-the-shelf (COTS) computing hardware. 

This use case is designed to showcase how ASTRID integrates gracefully with a NFV-based telecom 
system, which includes a set of multi-access edge cloud (MEC) nodes able to connect to a set of central 
cloud (CC) nodes across multiple available access/backhaul networks. As main use case to illustrate the 
effectiveness and efficiency of the ASTRID solution, the distributed networking platform implemented 
in demonstrator #2 will be comprehensively applied to a (mobile) IoT use case, named hereafter 
Campus IoT-Vertical as a Service. The demand for private campus networks [6] offers telco operators 
an opportunity for value generation with an estimated market size of 60-70 billion euro by 2025. The 
Network Service Provider (NSP), e.g., a Telco Operator or a Virtual Mobile Network Operator, is 
delivering to a customer campus-location a dedicated (and possibly private) managed network-service 
for connecting a number of (mobile) IoT- and end-user equipment-devices to one or more IoT-
Applications.   

4.2.2 Service Topology 

The following Figure presents a high-level overview of the use-case service graph with its main 
components.  

 

Figure 15. Use Case #2 Service Graph 
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Two different IoT applications will be implemented and tested, leveraging two common 
communication technologies: Cellular (LTE) and low power Long Range Wide Area Network 
(LoRaWAN). LTE is a great fit for applications that need high data throughput and large coverage. 
LoRaWAN is suitable for applications and devices that need to send small amounts of data over long 
distances with multi-year battery lifetime.  In the former case, a video surveillance application will be 
developed allowing access to live video/image and recorded content from IP Cameras through an 
LTE/EPC network. In the latter case, an application that collects and displays different types of data from 
sensors (e.g. Temperature and Humidity12) over a LoRaWAN network will be developed. 

To support the different access networks (LTE and LoRa), appropriate open source solutions will be 
investigated. As an illustration, a software deployment of the current LTE/EPC mobile network will be 
realized based on existing open source solutions (e.g., openair-cn13, nextEPC14, srsLTE15). For the 
LoRaWAN part, LoRaServer16 is selected. Two security-related components will be developed including 
the “Identity Access Management” (IAM) and the ”Secure Gateway”. The former implements the 
required authentication and attribute-based access control (ABAC) functionalities for the deployed 
applications. The later implements the “Proxy” component in Figure 2 to provide secure use-data- and 
control-data-channels between the application components as well as the local agents/probes.  

4.2.3 Specific Threats 

The global IoT market will reach $4.3 trillion by 2024 according to Machina Research [7]. The number 
of new deployed devices/things are growing year by year. Such devices connect to different networks 
to provide collected information from environments to be later processed, analysed and stored on the 
cloud in order to make/take decisions. The convergence of Cloud computing and IoT brings business 
opportunities but it also raises new risks and challenges, especially due to the poor security on the IoT 
devices. Because of their poor attack- resistance, IoT devices are becoming the new targets of the 
fraudsters/hackers and many incidents were reported in the past. Hundreds of stolen SIM cards of smart 
light devices in Johannesburg were discovered too late [8] (the damage was not only losses caused by 
using these SIM for making malicious calls but also the traffic jam and the accidents). Botnets are 
growing larger and smarter than ever by exploiting poorly-secured IoT devices (e.g., CCTV cameras) to 
launch a DDoS attack [9]. Security-enabled  IoT services are getting a lot of interest from the 
community  [10] [11]. Table 4 briefly summarizes the main threats covered by this Use Case. 

  

                                                             

 

12 https://www.thethingsnetwork.org/marketplace/product/ls-113 

13 https://github.com/OPENAIRINTERFACE/openair-cn 

14 https://nextepc.org/configuration/03-lte/ 

15 https://github.com/srsLTE/srsLTE 

16 https://www.loraserver.io/ 
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Table 4. Summary of Main Threats for the Use Case #2 

Source Threats ASTRID improvements 

Public Internet / 
Edge Access 
Network 

DoS, spoofing, redirection 
Custom network traffic statistics and analytics 
Mitigation from the Edge (close to the source of 
attack) 

Devices/End 
Users 

Illegal activities  
(DoS by Botnets, malicious 
requests) 

Collection of logs and records for forensic analysis 
Mitigation from the Edge (close to the source of 
attack) 

Insider 
Attacks from compromised 
service components 

Automatic firewall configuration 

4.2.4 Implementation Plan 

The use case implementation and validation will be conducted in two phases, aligned with the related 
WP4-Tasks, and follow the general workflow devised by the ASTRID architecture [2] 

Pre-deployment Enrichment (May 2019 – November 2020)  

This phase aims to develop the ASTRID use case components. The results will be provided in D4.2, 
D4.3, and D4.4. This phase will include the following activities: 

 Develop all components/VNFs identified in Figure 15. Some components (EPC/LoRaWAN) will be 
developed by reusing existing open source solutions. The selection of suitable solutions will be 
based on a further investigation related to their capability set, flexibility and 
performance/resource consumption. 

 Develop eBPF programs to collect network statistics, to trace system calls, to detect traffic 
patterns and to filter packets.  

 Develop Logging/Logstash beat to collect logs from use case components 

 

Run-time demonstration and validation (December 2019 – April 2021) 

This phase aims to integrate and validate the use case components integrated into Task 4.4. using the 
ASTRID framework developed in WP2 and WP3. The results of this phase will be provided in D4.5, D4.6, 
and D4.7 The main tasks of this phase include: 

 Develop an adapter/plugin to integrate the ASTRID framework with the OpenBaton Orchestrator 
and that translates ASTRID operations to the OpenBaton APIs 

 Prepare all required component VNF-descriptors to be deployed and managed with OpenBaton 

 Set-up of the demonstration and validation environment, including the ASTRID framework and 
benchmarking/analytics toolkits. 

 Validate the ASTRID framework as further described in the demonstration and evaluation plans.  

Table 5 lists the required activities and responsible partner to implement the Use Case # 2. 
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Table 5. Implementation Plans for Use Case #2 

Component/Feature Partner 
WP/ 
Task 

Use Case Components/VNFs implementations TUB/AGE  T4.3 

Build VNF packages TUB/AGE  T4.4 

OpenBaton Adapter implementation TUB/AGE T4.4 

VNF Logging/Logstash beat (log collection) CNIT WP2 

eBPF programs (local inspection and monitoring) POLITO WP2 

Analytics toolkit (detection of network threats) ETI WP3 

Firewalling policy (automatic configuration of rules) POLITO WP2 

4.2.5 Deployment Infrastructure 

To support the use case deployment on both the Edge and Central site nodes, two OpenStack (Queens 
version) virtual infrastructure environments (NFVI) have been set up in the TUB-IT cloud infrastructure 
(see Fig. 16 and Fig. 17). 

 

Figure 16. Use Case #2 OpenStack Infrastructure  

Two other servers have been allocated for the deployment of the ASTRID framework and of the 
OpenBaton orchestrator. We will utilize the latest version of OpenBaton (Version 6). The current version 
supports the deployment of ASTRID use case components in different types of NFVI infrastructure 
including OpenStack and Docker. Other servers can be added to the ASTRID use case #2 deployment if 
needed. 
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Figure 17. Use Case #2 within ASTRID Framework 

4.3 Relation to the ASTRID Application Scenarios 

In the early project phases, a number of reference application scenarios have been identified, to describe 
the main improvements of the ASTRID framework with respect to the current practice, which are described 
in D1.1 [1]. Table 6 lists the application scenarios. For each scenario, a reference to the descriptive Section in 
D1.1 is documented, together with an indication of the Use Case that includes such scenario. 

Table 6. Mapping of Application Scenarios to Use Cases 

Name Use Case 
Section 
in D1.1 

Situational awareness for virtualized 
services 

Security orchestration in cloud environment 
Security orchestration in NFV environment 

3.7.1 

Distributed firewall for cross-cloud 
applications and cyber-physical 
systems 

Security orchestration in cloud environment 
Security orchestration in NFV environment 

3.7.2 

Programmable network traffic 
monitoring for DoS protection 

Security orchestration in cloud environment 
Security orchestration in NFV environment 

3.7.3 

Trusted software and safe execution 
at run-time 

Security orchestration in cloud environment 3.7.4 

Response to Attacks and Threat 
Enabling Forensic Investigation 

Security orchestration in cloud environment 3.7.5 

Lawful interception Security orchestration in cloud environment 3.7.6 
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As seen in Table 6, the Use Case #1 “Security Orchestration in Cloud Environment” is conceived to 
cover as much as possible all these scenarios, so to fully demonstrate the improvements brought by the 
ASTRID framework.  On the other hand, there are several important contributions from Use Case #2 to 
the ASTRID objectives regarding the requirements to reduce the overhead of security processing (by 
providing protection at the edge, close to the source of attack) as well as to create a new potential market 
targeting telco operators. Telco operators have more opportunity and are better positioned to exploit 
the IoT applications markets by providing “context-aware” security-as-a-service solutions to vertical 
industry stakeholders. Regulated industries such as finance and healthcare need data to be stored and 
analysed on-premise of the enterprises. Attacks and data breaches need to be prevented/mitigated 
more quickly, close to the source, at the network-edge, instead of in central data-centre/commercial 
clouds. 

5 Demonstration and Validation 

Demonstration activities will prove the feasibility and functional validation of the ASTRID framework 
for the two selected Use Cases. Validation activities will evaluate the achievement of the technical 
objectives and expected impacts listed in the proposal. Demonstration and performance evaluation will 
be driven by the following validation objectives: 

 improved visibility over cloud applications and NFV services deployed in multi- and cross-cloud 
environments, without relying on Third-Party- services and - infrastructures; 

 programmatic access to the security context, made-up of data, events, and measures from a 
heterogeneous set of sources, balancing the depth and processing-overhead of inspection and 
monitoring processes; 

 faster and more effective / better reaction to attacks, leveraging automation and 
orchestration tools to carry out mitigation and recovery actions in the execution environments 
and on the service graph. 

Based on these objectives, a set of demonstration and validation scenarios has been selected, based 
on the threats model for each Use Case (Section 4) and target usage scenarios (D1.1, Section 3.7). Each 
demonstration and validation scenario describes the main objective, trial conditions, target KPIs and 
acceptance criteria. Additional validation scenarios, as well as extensions to those proposed in this 
document, might be identified by WP2/3, to better validate specific tools and algorithms. 

As a general remark to performance evaluation, it is worth underlining that KPIs and acceptance 
criteria might be adjusted later on in the Project in case the testing conditions (components of the 
application, virtualization infrastructures, behaviour and complexity of attacks) should differ 
substantially from what was envisioned at this stage. 

5.1 Automatic Firewalling 

The correct configuration of firewalling rules is of paramount importance to avoid malicious network 
connections to applications and to permit network connections only for application- and platform-
internal use (microservices, application-services) or debugging and testing purposes. In a distributed 
and dynamic cloud environment, the definition of firewall rules is challenging, because of the many 
components (and their versions) that may be present and the evolving topology. In this respect, ASTRID 
automates the generation and application of firewall rules, based on the service description, which 
defines what communication patterns are allowed within the service and with external entities (users 
and other applications). 
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Description. This scenario will demonstrate the correct behaviour in deriving and applying the 
firewall rules. A list of communication patterns will be derived automatically from the service 
description (e.g., by logical links between clients and servers); in addition, the Security Provider will 
insert additional constraints in the Security Dashboard (e.g., set of IP addresses allowed to use the 
service). The service will be deployed by the service orchestrator, while firewall rules will be set by the 
Security Controller at initialization time. After deployment, the actual rules will be retrieved through the 
Context Broker and checked for correctness. 

Conditions. The validation will consider small/medium services (less than 10 discrete virtual 
functions). This is rather representative of common services which are often replicated for different 
service providers or users. 

KPIs and acceptance criteria. The automatic computation of firewall rules must not delay 
indefinitely the initialization of the service. Based on typical deployment times, target KPIs and 
acceptance criteria are defined as follows: 

Parameter Target KPI Acceptance criteria 

Computation of firewall rules 2 min 5 min 

Instantiation of firewall rules 30 sec 1 min 

5.2 (Distributed) Denial of Service 

Availability is an important (Service Level Agreement) feature for any kind of service provider, for 
safety, economic, or reputation reasons. Denial of Service (DoS) attacks make a service unavailable by 
consuming computing/storage/networking resources or by affecting its correct behaviour (e.g., by 
dropping or redirecting network packets). They are difficult to prevent and mitigate because it is 
difficult to distinguish between legitimate and malicious activities, especially in case of distributed DoS 
(DDoS) and spoofing. The availability of a rich security context from multiple sources (file logs, system 
calls, network packets) is expected to improve the filtering capability, while service orchestration can 
migrate the service to a different location when no mitigation actions are possible (for example, in case 
a network link or the provider’s infrastructure is saturated). 

Description. This scenario will demonstrate and validate the ability to mitigate (D)DoS attacks. The 
Security Provider will activate the “DDoS protection” feature (both prior to the service deployment and 
at runtime). Two kinds of DoS attack will be initiated, a directed SYN flood (with source spoofing) 
targeting the cloud/NFV application and an indirect volumetric attack targeting the infrastructure 
(NFVI) that hosts the application. The attacks will be performed with growing volumes, in order to 
understand if and when the attack is detected. The mitigation strategies will be based on filtering of 
malicious packets in case of direct attack and migration of the service to a different infrastructure in 
case of indirect attack. 

Conditions. The two attacks will be generated with growing traffic volumes, proportional to a 
reference load for the application (to be defined based on the actual set up of the demonstrators) in the 
case of direct attacks and proportional to the link bandwidth of the infrastructure for indirect attacks. 
The volume will range from very small attacks (with limited impact but difficult to identify) to large 
attacks (easy to detect, difficult to mitigate selectively), according to the following plan: 
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Type Target Volume 

Direct Application component (signalling handler) 

5% 

25% 

50% 

100% 

150% 

Indirect Network link (data centre) 

5% 

25% 

50% 

75% 

100% 

KPIs and acceptance criteria. The effectiveness of the ASTRID framework depends both on the 
capability of the detection-algorithms and on the reaction time. The two aspects will be evaluated 
separately, to better identify which component may need further improvement and development before 
exploitation. 

Parameter Target KPI Acceptance criteria 

Time to detect direct attacks 2 min 10 min 

Time to detect indirect attacks 30 min 1 h 

Time to trigger reaction 30 s 2 min 

Time to migrate a single virtual function 1 min 2 min 

Time to migrate an entire service 5 min 5 min 

The above figures fit the more generic targets set in the proposal for detecting network anomalies (< 
8 h), responding to attacks (< 2 min), replacing a single function (< 2 min), and re-deploying a service 
graph (< 5 min). 

5.3 Malware and Intrusions 

Cloud applications are usually booted from trusted images, but there are no guarantees they cannot 
be modified or get compromised at a later time. Intruders may guess valid credentials to log in, find 
backdoors to bypass security controls or extract secret information (i.e., keys, passwords, etc.) in an 
attempt to breach the confidentiality of the underlying communications among system entities and 
components. The introduction of malware is less likely than with desktop computers and laptops, 
because of the different usage patterns, but some forms of code injection through cross-site scripting or 
request-forgery are still possible for dynamic web applications (which are expected to be present in 
many virtual services). ASTRID collects a broad range of security events and security-context 
information including application logs, system logs, and system calls that can help identify anomalies 
and unexpected behaviours. 
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Description. This scenario will demonstrate and validate the ability of the ASTRID framework to 
provide strong guarantees for device and component integrity, during run-time, through continuously 
monitoring the execution of the deployed services in order to detect any deviations from the normal 
(expected) software execution flow. The goal here is to detect any attempts for breaching the security 
of any valuable data in transit (i.e., encrypted data reflecting VoIP calls) that rely on various 
infrastructural components in the service graph. However, the infrastructure will not behave as 
expected if a component is compromised. A tampered component could, for example, leak the data to a 
location chosen by the attacker, expose it for brute-forcing or compromise the encryption keys that have 
been established. Although the communication in the use cases will be protected (i.e., through the 
establishment of an end-to-end secure channel), components could still leak metadata about the traffic 
or can expose it for subsequent attacks on the secure protocols and/or cryptographic algorithms. To 
reduce such risks, the trusted management of these infrastructural components will take into account 
the integrity of the deployed components/services by means of the advanced remote attestation 
techniques provided by the ASTRID framework. Two concrete instances will be investigated: First, 
before the establishment of a secure communication channel between users, the Security Provider will 
initiate the process for attesting the integrity of the infrastructure entities that host the deployed 
functions in the service graph (i.e., Signalling Handler, Call Handler, etc.). This will be achieved through 
security policies, managed by the Security Provider, describing whitelists of the software executables 
that are allowed to be installed in an execution environment (VM, Container) so as to have strong 
guarantees on the integrity of the host entities. The attestation toolkit of the host machine will take 
secure measurements of the device’s memory map (through the internal Trusted Component, i.e., 
Trusted Platform Module (TPM)) to be sent to the Context Broker for verification/attestation.  Second, 
after the establishment of the communication session, continuous monitoring of the execution flow of 
the specific system and of low-level properties will be performed to detect any deviations from the 
expected control-flow graph that is indicative of the presence of potential malware. Particular focus will 
be given on attesting the execution flow of the functions (e.g., Call Handler) that handle the security and 
confidentiality of the communication session between users, to identify any malevolent attempt to 
compromise the session keys used for the cryptographic primitives (i.e., AES, HMAC keys, etc.). In this 
context, attack vectors will include the deployment of a service/function, during run-time, that is not 
part of the initial established whitelist (first case) and the deployment of targeted backdoors in specific 
execution environments running the Call Handler so as to then leverage advanced techniques such as 
Return-Oriented-Programming (ROP) [6] for exploiting the execution flow of such handlers (second 
case) without however altering the service’s overall status (as this will be detected from the component 
integrity checker).  

The mitigation strategies will be based on re-routing traffic to other components in the infrastructure 
that have not been deemed as compromised (immediate action) and on the initiation of the process for 
re-deploying the services whose control-flow graphs have failed to be attested from the ASTRID trusted 
repository (second-level action). Furthermore, since the output of the attestation is binary and can only 
reflect on whether there is a deviation in the execution flow, the Security Handler and Context Broker 
will also send system commands to activate additional monitoring hooks for investigating specific 
system calls, memory data structures, etc., in order to be sent for further offline investigation to 
concretely identify the specific vulnerabilities that led to such an attack. 

Conditions. As already described in the ASTRID overall architecture [2], the presence of a Trusted 
Component is needed for performing the secure operations of the novel remote attestation toolkit. In 
the context of the experiments to be conducted, a virtual- or software-based TPM will be leveraged and 
will be installed in all infrastructural entities that can act as the prover and verifier in the attestation 
process (i.e., Security Handler, Context Broder, deployed VMs / Containers). Furthermore, as the goal of 
the project is not to showcase the execution of sophisticated attack vectors but their efficient detection 
and mitigation, targeted backdoors will be installed in specific entities that will act as the intrusion point 
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and allow further, more advanced tampering of the installed executables. Such executables may have 
been tampered even before their deployment in the service graph, although this is not the case in the 
normal execution of the ASTRID framework (as services and functions will have been statically analysed 
before been added in the Trusted Repository). In the context of the experiments, altered control-flow 
paths will be activated in specific time slots in order to better emulate the execution of advanced ROP 
attacks.  

KPIs and acceptance criteria. The effectiveness of the ASTRID framework depends on detecting a 
wide range of attack vectors (targeting device and software integrity) in all deployed entities, in the 
service graph, and on the detection and reaction time. These aspects will be evaluated separately, in 
order to better identify possible improvements. 

Parameter Target KPI Acceptance criteria 

Number of components in the service graph 
whose integrity is monitored by the Security 
Handler 

100% 100% 

Amount of integrity attacks on components in the 
service graph 

80% (with integrity 
models and whitelists) 
60% (advanced 
control-flow integrity 
mechanism) 

>60% 
 
>40% 

Amount of traffic diverted to alternative paths 
when a component/entity is compromised 

80% >60% 

Time to detect compromised software 

10 s (with integrity 
models) 
1 min (with advanced 
control-flow 
attestation) 

< 1min 
< 5 min 

Time to trigger reaction (based on the result of 
the attestation process) 

30 s < 2 min 

Time to replace a single virtual function 1 min < 3 min 

Time to re-deploy an entire service 5 min < 10 min 

5.4 Illegal Activities 

Privacy is an undeniable right for citizens, but this must not be an excuse to hide illegal activities. End-
to-end encryption of data is necessary for confidentiality, especially when crossing public and untrusted 
infrastructures, but this must not become a resource for bypassing investigations from public 
authorities. Interception of communications and access to private data need to be strictly regulated, but 
should anyway be possible, conditioned to lawful authorization. The integration with the orchestration 
process in the ASTRID framework enables the modification of the service to support legal interception 
or inspection of data at rest, only for an authorized and limited time period, so to not create 
vulnerabilities and weakness in the overall service. 

Description. An authorized user that belongs to the service provider’s organization activates a “legal 
interception” feature from the ASTRID Security Dashboard, which installs a specific policy in the run-
time environment. When a communication session is established between two users, the event is 
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notified to the Security Controller that, if the session meets the conditions in the interception policies 
(e.g., identity of one or both peers),  duplicates the traffic exchanged between the peers and sends it to 
a specific mediation gateway that connects the service provider to the relevant Law Enforcement 
Agency. To save resources, interception gateway, i.e. the virtual device that forwards intercepted traffic 
towards the mediation gateway is automatically deployed before the first interception begins and 
removed just after the termination of the last active session. Interception gateways tunnel and encrypt 
traffic to preserve confidentiality. Mediation and interception gateways authenticate each other to 
ensure the correct delivery of intercepted traffic. ASTRID generates a notification towards the service 
provider to notify the establishment of an intercepted communication.  

Conditions. No specific conditions have been currently identified for this validation scenario. 

KPIs and acceptance criteria. The performance of this scenario is mostly related to the time to 
activate the legal interception. On-the-fly activation avoids the need to run additional resources for a 
long time, hence making this security service cost-effective. 

Parameter Target KPI Acceptance criteria 

Time to deploy the interception gateway 1 min 1 min 

Time to change the forwarding rules in the 
service 

20 s 1 min 

Time to trigger interception 3 s 10 s 

5.5 Forensics 

Many network attacks are carried out by botnets and compromised devices, so it is usually difficult to 
identify the culprit and prosecute him. In some cases, there may have been guilt, negligence or 
carelessness from internal users, which are more likely to identify. Moreover, even if the culprit cannot 
be identified, it may be useful to demonstrate that all best practices and reasonable countermeasures 
were taken. During an attack, the main concern is to stop or mitigate it, so there is usually a lack of time 
to deeply investigate the matter and identify the cause and responsible. Keeping records of logs, packets, 
events, system calls, memory dumps, and other relevant information, helps perform offline analysis. 
However, the larger the amount of data the larger the storage requirements and the overhead of the 
collection process. The ASTRID framework aims to provide a good balance between the opposite needs 
of fine granularity and small resource consumption, by adapting the verbosity of security information 
to the actual context. For example, aggregated statistics on network flows may be collected every 30 s/1 
m, whereas more detailed information (source address, packet’s content) may be collected as soon as 
an alarm is triggered by any detection algorithm. In the same way, memory dumps might only be 
performed occasionally, and with higher frequency in case of anomalies. It will support offline 
investigation of the attack, in order to find the origin and identification patterns. An additional 
consideration concerns the format of the data, where they are going to be used as evidence with legal 
validity. The usage of timestamps, the identification of the origin, the storage in dedicated 
infrastructures, and other technical and/or procedural requirements may be necessary to fulfill the 
regulation. 

Description. The Service Provider sets the per-service policies for forensics data collection by 
exploiting Security Provider’s facilities. A policy defines the minimal set of data and information to be 
registered, the time this information is kept when no anomalies occur (1 week, 1 month, 6 months, 
roughly depending on the threat landscape the service is addressing), the additional measurements and 
data to be collected in case of specific attacks and generic anomalies. As soon as an alert is triggered, the 
forensic policy increases the verbosity, by re-programming local security hooks through the Context 
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Broker; this also extends the persistence of data in the historical database. When the attack has been 
stopped or the investigation has terminated, the Security Provider resets the policy, so that it reverts to 
its basic behaviour.  

Conditions. This scenario is applied in combination with one of the demonstration scenarios 
described in Sections 5.2-5.4.  

KPIs and acceptance criteria. This scenario is mostly conceived for demonstration rather than 
performance evaluation. It will extend one of the previous scenarios to show that the collected 
information can be used to investigate the threat/attack and that it is compliant with existing 
regulations. The collected information and the knowledge of attack will be used to assess how effectively 
the attack was detected and mitigated. The only meaningful performance measure will be the time to 
reprogram the local monitoring hooks: 

Parameter Target KPI Acceptance criteria 

Time to change/update monitoring and 
inspection rules 

30 s 2 min 
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