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1 Executive Summary 

This document reports the intermediate outcome from Task 1.5, by describing the initial version of 
the ASTRID architecture that will drive the technical activity in the second year of the project. The 
description considers the expected workflow to automate security management for a virtualized 
service, including the involved actors and their roles, and highlights the evolutionary and innovative 
steps with respect to current practice. The workflow identifies two main scopes, one for adapting the 
service to the ASTRID framework (pre-deployment) and the other for orchestrating security features 
(run-time). The architecture mostly covers the second scope, which is suitable for being engineered, and 
provides more generic indications for the first one, which is expected to be different for every 
orchestration model. 

The description of the ASTRID orchestrator is largely based on the identification of three logical 
planes, namely the Data Plane, the Control Plane, and the Management Plane, with an explicit parallelism 
with the architectures adopted for software-defined networking. A number of logical components have 
been identified to implement the ASTRID workflow, which are mapped to research and innovation 
activities in WP2 and WP3. The document also analyses the progress towards the project objectives, by 
discussing to what extent the proposed architecture and its logical components fulfil the functional 
requirements previously identified in D1.1. 

Finally, the ASTRID architecture is compared with other frameworks in the same context (I2NSF from 
IETF), to identify possible exploitation opportunities and technological distinction. Future work in WP5 
will also consider commercial aspects and competitive advantages. 
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2 Introduction 

The usage of virtualization technologies simplifies the creation of dynamic execution environments, 
removing the need for long hardware reconfiguration. In case the amount of resources and duration of 
the usage is unknown or uncertain, public cloud services avoid the need for large investments in the 
hardware, hence reducing both CAPEX and OPEX through pay-as-you-go models. Despite extreme 
flexibility and large cost-effectiveness, virtual environments wipe physical barriers away, entrusting 
hypervisors or other purely-software mechanisms to assure isolation between applications and 
networks.  

There is a general awareness of the additional threats that come when adopting cloud technologies, 
but the presence of multiplicity of technical and business models hinders the development of general 
solutions. The main evolutionary trends in virtualization paradigms and their implications on cyber-
security aspects have already been thoroughly examined in D1.1. The same document also discusses 
new directions from improving situational awareness, as inferred by the analysis of security reports and 
whitepapers from major vendors in this domain. Based on the evolving scenario, there is a clear need 
for more effective detection (especially for unknown, stealthy, and zero-day attacks), more efficient and 
pervasive inspection (encompassing hardware, cloud, and IoT), and improved automation (in both the 
detection and management processes). The ASTRID concept entails enhanced visibility on virtualized 
services and improved awareness of attacks and new threats, through a modular and programmable 
framework that leverages latest advances in automation paradigms. 

The scope of the ASTRID project embraces different technological domains: virtualization and cloud 
computing, network function virtualization, and cyber-security. Section 3 gathers the main technical 
terms that are used throughout the paper, giving a brief yet exhaustive explanation for each of them. It 
represents a good reference for those readers that are not deeply skilled in all the involved fields or are 
not interested to read all technical documentation from the ASTRID project.  

In the transition from concept to implementation, the definition of a reference architecture is the 
preliminary step to translate objectives into concrete functional elements and their relationships. The 
definition of the architecture starts from delineating the technological and business areas (i.e., the 
scope), because the whole context of virtualization and cloud services is too vast and generic for a 
common approach in the mid-term. Then, it is important to take into account the main limitations of 
existing approaches and technologies, so that proper solutions can be considered since design time to 
overcome them. Finally, the technical and business objectives dictate what functions and characteristics 
must be present in the architecture. Though the scope, motivations, and objectives for the project were 
already clear at the proposal stage and are (at least) partially expanded in D1.1, it is worth collecting 
and briefly reviewing them also in this document (Section 0), so to keep together all the relevant 
background behind the definition of the ASTRID architecture. This Section can be safely skipped by 
those readers that are already familiar with the main ASTRID concepts. 

The ASTRID conceptual workflow (Section 0) describes the main actors involved in the process of 
secure orchestration and the sequence of operations that they are expected to perform. It compares the 
expected workflow with current practice, mostly to give a complete picture to readers which are not 
familiar with software orchestration. The conceptual workflow identifies the need for the main elements 
in the ASTRID architecture. In brief, it identifies the need for a pre-processing phase, which analyses the 
service and identifies a set of enrichments to provide security services, and a run-time phase, which 
implements the security policies. The ASTRID architecture is then described in Section 6. It follows the 
separation between a pre-deployment and a run-time scope identified in the conceptual workflow. The 
pre-deployment scope is more a list of tasks and activities to be carried out according to different 
practice, so it is not going to be implemented as a software component in ASTRID. The run-time scope 
describes the ASTRID orchestrator, which includes all components to collect the security context, 
process it, and trigger response and mitigation actions. Since this document is conceived to organized 
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the internal work, this Section also assigns the design and implementation of the discrete components 
to the different Tasks in WP2 and WP3. In addition, Section 7 reviews the requirements already 
identified in D1.1 and assesses the degree of fulfilment for each of them, so to better understand which 
one still need to be addressed by the following activities. 

It is worth underlining that the ASTRID concept follows under a more general effort to bring 
programmability and autonomicity in the management of security for virtual services. To this aim, the 
proposed architecture is compared with a parallel framework (Section 8), the I2NSF, being developed 
by the IETF. The comparison highlights similar concepts and conceptual workflows, as well as the 
unique aspects of ASTRID that distinguish the project and make it more challenging. 

The ASTRID framework leverages software orchestration for automatic deployment of its 
components, as well as for quick and effective reaction to threats and attacks. Since the development of 
orchestration tools does not fall under the scope of the Project, it will not deliver technical 
documentation on these aspects. Unfortunately, orchestration is a relatively new branch of research and 
there is a general lack of books, articles, and whitepapers on this topic. To fill this gap, this document 
includes a brief appendix (Annex A) on alternative orchestration models that are of interest for ASTRID, 
including the main initiatives from standardization bodies. It is intended both as internal reference for 
the Consortium as well as more detailed information for the interested reader. For similar reasons, an 
additional an additional appendix discusses the I2NSF framework (Annex B), which currently 
represents the only reference and comparison term for ASTRID. 

  



 

Page 11 of 76 

 
Deliverable D1.2 

 

3 Terminology 

A number of terms and expressions are used in ASTRID that may differ in different domains. To avoid 
ambiguities, Table 1 lists the most relevant terminology and the meaning in this Project. 

Table 1. ASTRID terminology. 

Term Meaning 

ASTRID Security 
Framework 

The ASTRID Security Framework is a collection of software tools, protocols, and 
technologies that are used to build situational awareness on virtual services and 
react to attacks. All the components are organized in three planes: data, control, 
and management. It is very important to note that, though we use a typical 
network terminology, the security framework is not related to a network stack.  

Cloud 
Management 
Software 

Cloud Management Software effectively support provisioning of resources in a 
virtualization environment. It implements a common and unified interface 
towards heterogeneous virtualization technologies (i.e., hypervisors, virtual 
switches, storage systems), for creation, modification, configuration, and 
removal operations. Cloud Management Software also manages identity and 
access control throughout the virtualization environment. Typical examples of 
Cloud Management Software are OpenStack and VMware vSphere. 

Control plane 

The control plane is a collection of functions for monitoring, discovery, 
negotiation, and configuration of capabilities and properties of an underlying 
data plane. The control plane implements the necessary logic to react to the 
evolving context in a short timeframe. The control plane orchestrates the flow on 
the data plane according to imperative guidance (i.e. configuration) received via 
the management plane. Typical functions of a control plane include discovery of 
peers and their capabilities, monitoring of performance, negotiation of dynamic 
properties and operation modes, configuration of operational parameters. The 
concept origins and is mostly used in the networking domain for packet 
forwarding, where the control plane encompasses all functions to automatically 
compute and update paths for all possible destinations. In the ASTRID Security 
Framework, the control plane selects the detection algorithms, configure the 
data plane to collect the security context, manages authentication, authorization 
and access control. It operates according to behavioural policies provided by the 
management plane. 

Cyber-security 
professional 

See IT Security professional. 

Data plane 

The data plane is the set of functions to process data. This may include several 
tasks as inspection, enforcement, collection, aggregation, and analysis. It 
operates under imperative and deterministic models, according to 
configurations and parameters set by the control plane. The concept origins and 
is mostly used in the networking domain, where it denotes packet forwarding 
operations (including classification and filtering), according to the rules 
computed by the control plane. In the ASTRID Security Framework, this plane 
includes all functions for monitoring, inspection, enforcement, and analysis of 
the security context (events, logs, statistics), therefore including detection and 
correlation algorithms. 
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Term Meaning 

End user 
He is the actual user of a virtual service. He may deploy himself the service 
through the orchestration software, or use the service provided by a service 
provider. Only in the first case it takes actively part in the software lifecycle. 

Event-Condition-
Action (ECA) 
policy 

An imperative paradigm to define a conditional behaviour under the following 
model: 

 an Event triggers the evaluation of a Condition clause; 
 a Condition evaluates the current context and possibly selects an Action 

to be performed; 
 an Action clause defines the sequence of operations to be performed. 

Flow-based 
policies 

Flow-based security policies define the behaviour of a system according to 
constructs that reflect the typical operation of flow-based network security 
functions. Flow-based NSFs are based on stateful processing, i.e., they consider 
both the packet content (headers and payload) and context (session state). ECA 
policies are an example of flow-based security policies. 

Identity 
management 

A framework that establishes the rules to access resources and enforces their 
application. It is responsible for Authentication, Authorization, and Accounting 
(AAA) operations. Rules are often expressed as policies that take into account 
multiple authentication and authorization factors. While originally the concept 
was more focused on users, it has then evolved to include mutual authentication 
of applications, services, and resources. 

IT Security 
professional 

He is responsible for IT security, including networks, computer systems, and all 
digital equipment in the enterprise. The roles and job titles in the security sector 
often involve somewhat overlapping responsibilities and can be broad or 
specialized depending on the size and special needs of the organization. Typical 
job titles are security analyst, security engineer, security administrator, security 
architect, security specialist, and security consultant. The responsibilities vary 
from defining security plans and policies, analysing vulnerabilities and 
evaluating risks, deploying and configuring firewalls, intrusion 
detection/prevention systems, deep packet inspectors, security information and 
event management systems. 

Management 
plane 

The management plane defines the system behaviour in the mid/long term. It 
includes tasks as instantiation and configuration of components in the 
data/control planes, translation of high-level intents and goals into commands 
and control policies, monitoring of operational parameters to detect deviations 
and malfunctioning, interaction with other systems/components. The term 
originates and is commonly used in the networking domain, where it denotes the 
set of interfaces and protocols to configure the behaviour of devices and 
protocols (e.g., select and configure the routing protocol, set device name, set 
date and time, create virtual LANs, etc.). In general, interaction on the 
management plane is less frequent and less regular than on the control plane. 
While a system can fulfil its purpose without continuous input from the 
management plane (and this is a typical situation when there is no need to 
change the services implemented by that system), without continuous 
availability of control plane functions a typical component could not function 
properly (i.e., it would not know how to behave in case of unexpected events). 
The management plane can require manual operations (e.g. through a CLI or web 
interface), or it can be automated through orchestration tools.  In the ASTRID 
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Term Meaning 

Security Framework, this plane is responsible to assist security providers. 
Typical management actions include but are not limited to: dynamic adaptation 
of the service graph to on-going attacks, enhanced trustworthiness in 
deployment and business chains, graphical representation to users, information 
sharing, definition of reaction and mitigation policies, etc. 

Network Security 
Function 

Software that provides a set of security-related services. Examples include 
detecting unwanted activity and blocking or mitigating the effect of such 
unwanted activity in order to fulfil service requirements. The NSF can also help 
in supporting communication stream integrity and confidentiality [16]. 

PKI 
Public Key Infrastructure is a set of roles, policies, and procedures needed to 
create, manage, distribute, use, store & revoke digital certificates and manage 
public-key encryption. 

Policy rule 
An imperative statement that is used to define the behaviour of a system. This 
includes monitoring and control of the state of one or more managed objects. For 
example, a policy rule may be described with the ECA pattern. 

Security 
orchestrator 

A tool that automates most tasks concerning security management, including 
monitoring and inspection, detection, reaction, notification. The effectiveness of 
a security orchestrator depends upon the presence of programmable and 
software-defined components in the execution environments, which can be 
controlled remotely. A security orchestrator is therefore expected to largely rely 
on the presence and capability of a service orchestrator. 

Security provider 

In the ASTRID architecture, he is the IT Security professional that flanks the 
service providers to guarantee secure and reliable operation of the virtual 
service(s).  He is responsible to respond to attacks, investigate new threats, keep 
data with legal validity as evidence in court.  

Service 
developer 

He creates Virtual Services, by chaining together Virtual Functions into Service 
Graphs. The service developer usually builds common service templates, which 
are then tailored to the specific needs of different customers by the inclusion of 
proper policies, to drive the orchestration process in configuration, deployment, 
and lifecycle management.  

Service 
description 

This is an abstract representation of a service, suitable to be parsed and 
processed by (semi-)autonomous orchestration tools. A service description 
includes the Virtual Functions that compose the service, and their logical 
relationships. Different models can be used for this purpose. Cloud applications 
are usually described by service graphs according to model-driven engineering 
(e.g., TOSCA), while network services usually employee forwarding graphs, 
which better capture the packet forwarding behaviour (e.g., ETSI MANO and 
IETF SFC). The ASTRID framework should remain agnostic of the orchestration 
model.  

Service graph 

A service graph depicts the logical topology of a service. It is usually represented 
as a (not necessarily connected) graph, which nodes are the elementary 
components of the service and links are associated with some logical 
relationship (e.g., flow of data, configuration dependencies). 

Service 
orchestrator 

A tool that automates most tasks to operate a service (cloud application or 
network function). Orchestration typically includes provisioning of virtual 
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Term Meaning 

resources (VMs, virtual networks, virtual storage), software deployment and 
configuration, management of life-cycle events (start/stop, scale, recover from 
errors or failures). 

Service provider 
He deploys Virtual Services by orchestration software on virtualized 
infrastructure. He provides services to end-users. 

Software 
developer 

He develops Virtual Functions. In ASTRID, the software developer may write 
himself the program code, or he may build Virtual Functions by wrapping 
existing applications with proper orchestration metadata (i.e., service name and 
description, deployment and execution constraints, provided/required 
functionalities, management hooks). 

Software 
orchestration 

This is the process to automate the deployment and lifecycle management of 
software applications and services over virtualized environments. The main 
purpose is to adapt the same software to the dynamic execution context, considering 
both different operational conditions and workload. There exist different 
orchestration paradigms, based on different models to describe the service, its 
components, execution constraints, lifecycle management rules, and so on. 

User (security) 
policy 

A user policy defines the expected system behaviour. It is often formulated by 
end users, so it uses non-technical semantics. User policies usually express the 
goal or intent, without considering the specific control interfaces of the 
underlying system. Its application requires a refinement into commands and 
configurations that can be understood by the controlled system; sometimes, 
intermediary technical representations are used to better cope with the 
presence of heterogeneous devices. 

Virtual Service 

A virtual service is a combination of multiple (virtual) functions deployed in a 
virtualization infrastructure. ASTRID will primarily address the Infrastructure-
as-a-Service paradigm, where applications are run in custom execution 
environments. A virtual service also includes virtual networking to enable 
communication among the functions. ASTRID specifically considers virtual 
services deployed over multiple clouds (i.e., cross-cloud deployments). 

Virtual Function 
(VF) 

A VF is a standalone software unit that can be combined with others and 
orchestrated to create virtual services. Each VF implements an elementary service 
and provides suitable interfaces to be chained with other components. A VF is 
composed of software programs and metadata for orchestration. Examples of VF 
include both applications (e.g., web server, data base, network functions (e.g., 
firewall, load balancer, router, traffic shaper, classifier, DNS, Enhanced Packet Core). 

Virtualization 
environment 

A virtualization environment creates software-based instances of resources. 
There exist different paradigms based on the type of resources to virtualize. In 
ASTRID, the focus is on the Infrastructure-as-a-Service model, hence a 
virtualization environment provides computing, storage, and networking 
resources. The main purpose of virtualization is to share the same hardware 
among multiple users, giving them the perception of being the unique owner of 
the resources; this is typical for virtual LANs (VLANs), hypervisors, shared file 
systems. In addition, being software-based technologies, provisioning of virtual 
resources becomes extremely easy with respect to the traditional processes to 
buy, deploy, and configure real hardware. 
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4 Scope, motivations, and objectives 

The ASTRID project tackles the structural limitations of legacy cyber-security paradigms with respect 
to evolving business and computing models. Hardware appliances are still largely used for most cyber-
security services in large enterprises, whereas software implementations are commonly used in small 
offices and homes environments (SOHO). In both cases, the typical assumption is the physical 
segmentation between internal and external resources through a security perimeter, an assumption 
that does not hole anymore when external cloud and IoT resources are integrated into business 
processes. 

The growing level of competitiveness and low profitability in the software industry have increasingly 
pushed for ever-shorter times-to-market and software lifecycles, from design to implementation and 
deployment. Agile software development methodologies have embraced the devops approach to reduce 
release times by massive recourse to automation in the deployment and operation process. Model-
driven engineering envisions the creation of high-level process models, which are then dynamically and 
automatically mapped (orchestrated) into software functions and infrastructural resources based on the 
evolving context. This evolutionary process undoubtedly brings unprecedented opportunities for the 
software industry, but the tight integration among diverse business roles and the need to share 
infrastructure and data bring additional security and privacy concerns that have not been addressed in 
a satisfactory way yet. 

A thorough analysis of the major trends behind the virtualization wave and their implications on 
cyber-security aspects is reported in D1.1, which also explains in details the Project concept and target 
application scenarios. Here, we complement that description with additional information that drove the 
definition of the ASTRID architecture. We therefore elaborate on the specific scope of the Project (the 
whole context of cloud and service orchestration is too vast and generic for a common approach in the 
mid-term), the main motivations, and the specific objectives, which together dictate the fundamental 
traits of the ASTRID architecture.    

4.1 Scope 

The cloud paradigm entails multiple virtualization models: Infrastructure-as-a-Service, Platform-as-
a-Service, Service-as-a-Service, Network-as-a-Service, and even Everything-as-a-Service. Every model 
provides different kind of resources (virtual machines, containers, storage space, web servers, operating 
systems, virtual networks, …), which customers acquire by software APIs. 

This Project explicitly consider the Infrastructure-as-a-Service (IaaS) model. IaaS is a very effective 
and agile paradigm that provides computing, storage, and networking resources corresponding to 
physical instances (servers, switches, disk arrays, network links). All the physical infrastructure is 
installed and configured only once with cloud management software and shared among multiple 
projects (tenants) and users, thus removing the need for hardware purchase, configuration, 
management, and disposal each time a new service is created. 

Figure 1 depicts the typical deployment of a cloud service in an IaaS environment. Each tenant 
corresponds to a virtual execution environment (light green cloud), which includes virtual machines 
(VMs), block storage, and network connectivity (locally and towards the Internet). A cloud service is 
composed of several components that interact to implement a business logic; each component is often 
installed in a separate VM for isolation and quick restoration purposes.  
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Figure 1. Virtual services are designed as graphs of applications. They are deployed in virtualised 
resources provisioned over a physical infrastructure. 

Despite of the speed and agility in resource provisioning, software installation and configuration still 
require time and delays service deployment. In addition, the same service is often replicated for multiple 
customers with minimal re-configuration, and the deployment burden significantly affects the final cost. 
The need to easily replicate repetitive tasks for multiple installations is already tackled by industry-level 
configuration tools like Puppet, Chef, Ansible; however, such tools are static in nature and cannot react 
to the evolving context (time, utilization, errors, workload). Software orchestration greatly increases 
the level of automation, pursuing the implementation of reactive systems1. 

The starting point for software orchestration is an abstract model that describes the application 
topology and its basic components. The model consists in a semantics that describes individual software 
components, deployment and execution constraints (CPU, RAM, storage), connectivity requirements, 
software dependencies (operating system, system libraries, software packages), interfaces, 
configurations, management hooks. The semantics usually covers both each single software component 
and the entire topology as a whole. The topology is often indicated as “service graph” or “forwarding 
graph”, which substantially differences in the formal representation (i.e., application-modelling 
engineering or data-driven topologies) and the target application domain (i.e., cloud or network 
function virtualization). While nodes are usually associated to basic applications and software functions, 
links have different meaning in different orchestration models: for example, they represent logical 
configuration dependencies (e.g., client/server, publisher/subscriber) in TOSCA [5] and data paths in 
ETSI NFV [7] and IETF SFC [9]. 

                                                             
 
1 The Reactive manifesto. URL: https://www.reactivemanifesto.org/ 
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The orchestration process is then responsible to provision the virtual resources, select appropriate 
software implementations for each graph node, deploy and configure each function in a consistent way, 
manage lifecycle operations for the whole service. 

The orchestrator is a smart engine that adapts the service graph to the current context, by exploiting 
specific metadata embedded by the developers (concerning requirements, constraints, and logical 
characteristics) and policies settled by service providers. The orchestrator is made of several 
components, which are used to provision the necessary virtual resources (CPU, RAM, disk, and 
network), to download software images and boot them into virtual containers (Virtual Machines, LXC, 
Docker, unikernel), to install required software and libraries, to configure each component in order to 
interact with the others (IP addresses, usernames, passwords, …), to monitor the execution of each 
single component. Orchestration may also include the deployment of additional components, according 
to specific service requirements (e.g., DNS, DHCP servers, load balancers, firewalls, antivirus, etc.) 
Finally, the orchestrator is responsible for whole life-cycle management of the application (start, stop, 
re-start, scale up and down or scale in and out, reconfiguration, de-provision). ETSI NFV [8] defines a 
refence architecture for orchestration (MANO – Management and Orchestration), which serves as a 
blueprint for interoperability between virtual network functions and NFV orchestrators. Nevertheless, 
multiple orchestration solutions have been developed both for the cloud and NFV (see D1.1). 

4.2 Motivations 

The ground-breaking shift in development and operation paradigms entailed by the usage of 
virtualization and automation tools has required a great effort in recent years to move from concept to 
real implementations. The complexity and multiplicity of the technical challenges to be solved have 
moved security in the background, also endorsed by the consideration that the large correspondence 
between the IaaS model and physical infrastructures would have permitted the application of 
virtualized implementations of existing cybersecurity appliances. However, de-coupling the software 
from the underlying hardware raises new security concerns about the mutual trustworthiness, lack of 
visibility, and potential threats about these two layers [11]. 

The automation of the operation tasks implies that also security aspects should be properly 
considered at the stage of graph design. However, agile and devops methodologies are progressively 
shrinking the number of professional figures involved. As a matter of fact, all the process workflows 
proposed so far only envision the roles of software developer, service developer, service provider, and 
infrastructure provider, but do not explicitly consider the presence of any cyber-security professionals 
(analysts, engineers, architects, officers). Security staff designs complex security policies and integrates 
security appliances into business processes, taking into account opposite needs of security and usability. 
They play a crucial role for safe and reliable IT operation and cannot be properly replaced by 
software/service developers. As a matter of fact, by recognizing the difficulty in effectively tackling ever 
more complex cyber-threats, enterprises are increasingly looking at cloud-based services and 
externalization as cost-effective solutions to the growing challenges and complexity in maintaining an 
up-to-date secure infrastructure that complies with regulatory requirements. 

Based on the above considerations, the following motivations for a new approach were already 
identified at the proposal stage: 

 Lack of physical perimeter: multi-tenancy and resource sharing are the main technical 
drivers for cost-effective cloud services. Isolation of tenants and segmentation of resources 
are the main pillars for any virtualization mechanism but are based on software mechanisms 
that provide weaker defence against cyber-attacks than physical boundaries. The number of 
known vulnerabilities and attacks in the cloud demonstrate that malicious users might be able 
to sneak in someone’s else virtual environment (virtual machines, containers, virtual 
networks, etc.). 
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 Lack of visibility. As extensively discussed in D1.1, there is lack of security services exposed 
by cloud management software to the tenants (usually limited to basic firewalling functions), 
which means that potential vulnerabilities, breaches, and threats of the virtualised resources 
are not visible to owners of the virtual services, maybe giving a false sense of security. Even if 
more appliances were available, relying on correct configuration and operations (including 
security updates) from third parties might not be an acceptable policy for most critical 
services. 

 Limited expertise in security aspects: even if portability and adaptation to multiple 
contexts of the same service is the peculiarity of devops methodologies, security implications 
might be very different. Pushing virtual instances around the service graph may give a false 
confidence of security, if they are not placed, configured and correlated in the right way. 

 Overhead on the service graph. Security appliances as antiviruses, firewalls, and intrusion 
detection/prevention systems usually perform deep analysis on network packets, system 
calls, and logs, often replicated in each virtual function. Such computation may delay the 
execution of main processes, hence reducing the responsivity and processing capabilities of 
the application, to not mention the additional requirements on computing and storage 
resources. The overhead is particular heavy for virtual services of limited size (which are 
expected to be the majority). 

 Increased attack surface. Security appliances are themselves sources of potential threats, as 
witnessed by the continuous vulnerabilities reported to national CERTs/CSIRTs (see D1.1). 
Just pushing security appliances in the service graphs without any effective response and 
mitigation plan in place might lead to a misleading perception of security.  

 Difficulty in forensics investigations. Saving relevant events and data for a posteriori 
investigation and evidence collection is not a straightforward process and may be 
cumbersome to be implemented for all virtual services.  

4.3 Objectives 

ASTRID seeks a novel a novel cyber-security paradigm that, according to the Project proposal, 
“provides better awareness about cyber-security threats of virtualised services, referred to each single 
component (i.e., each specific application) as well as the service as a whole (i.e., the entire service graph), 
and facilitate (possibly automate) the detection and reaction to sophisticated cyber-attacks.” The implicit 
focus is on enhanced visibility of what happens in each software component, with correlation at the 
graph level. Semi-autonomous reaction and mitigation is also envisioned to reduce the impact of attacks. 

ASTRID aims at making virtual environment more secure than today exploiting the agility of modern 
orchestration systems, by designing new tools for automating security management and integrating 
these environments with existing procedures. It is worth noting that ASTRID does not develop new 
procedures for sharing knowledge in national or international context and does not specifically target a 
wide range of threat detection algorithms. Rather, ASTRID will provide an overarching framework for 
dynamically collecting pervasive and thorough situational knowledge in virtualised environments and 
will show how this enhanced information can be exploited to feed a new generation of effective and 
efficient detection algorithms.  

The cardinal pillars of the ASTRID architecture come from the technical objectives settled in the 
proposal: 

 To decouple the service business logic from security management. The implementation 
of security is a complex task, which starts from the definition of policies and comes down to 
technical solutions and procedures. Security management of service graphs is even more 
challenging, since the context continuously changes (e.g., scaling and life-cycle management). 
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Though automation of mechanical tasks is an effective way to reduce human errors in 
software deployment and configuration, the definition of security policies and technical 
design should remain a prerogative of security professionals, which harmonize the whole 
process at the enterprise level. That means security appliances should not be incorporated in 
the graph topology at design time, but a side layer should be present to “enrich” the service 
graph with a broad set of security properties, including inspection, monitoring, detection, 
enforcement, reaction, and mitigation tasks. In the ASTRID architecture, security properties 
of each graph component as well as the whole service are defined by proper models and 
policies, which are then used at deployment time to properly configure the execution 
environment. A dedicated interface is expected to this purpose, that facilitate the integration 
with existing tools and procedures at the enterprise level (e.g., visualization of events and 
alerts, risk assessment, virtual networks). 

 Automate security management and response to security incidents and attacks. Despite 
the need of human abilities in defining the correct security strategies and policies, many 
repetitive tasks may be largely automated to avoid errors and misconfigurations. In this 
respect, the ASTRID architecture is expected to take advantage of recent orchestration 
models, by defining policies and constraints that describe “what” is required rather than 
“how” to implement it. Similarly, common mitigations and response actions can be often 
undertaken according to specific security strategies. Beyond the mere application of 
firewalling or access control rules, orchestration enables to automatically remove or replace 
compromised functions, change forwarding rules, isolate suspicious services for investigation. 
This will substantially improve the effectiveness of responses, which today often come late 
because of the need for human intervention. 

 Reduce the run-time overhead of security processing. Most security appliances require 
monitoring and inspection operations (on network packets, software behaviour, system calls) 
that consume CPU cycles and may deteriorate the overall service performance, especially in 
virtualised environment where hardware acceleration is rarely available; in addition, security 
appliances are not totally immune to attacks, so they increase the attack surface. In this case, 
the objective is two-fold: a) increase the processing efficiency of (at least) the most frequently 
executed portion of monitoring and detection tasks, and b) to protect security appliances from 
attacks. The ASTRID architecture is therefore expected to leverage local programmability to 
dynamically offload lightweight computation tasks, such as aggregation, filtering, fusion. Local 
inspection and monitoring capabilities should cover all relevant events and data for security 
analysis: data packets, system calls, application logs. The detection logic should instead be 
placed in remote and secure locations, hence shrinking the attack surface of the service graph. 

 Support legal and forensics investigation in virtualized environments. The growing 
number of virtual applications and services is also expected to be subject to illegal usage and 
cyber-crimes. Specific technical mechanisms are therefore required to facilitate forensics 
investigation for identification of crimes and criminals. In this respect, tight integration with 
the orchestration software will enable to dynamically change the service topology for 
interception or obscuration as required by law. In the meanwhile, the presence of a PKI and 
identity management will support digital signing and anonymization compliant with forensics 
practice and privacy rules. 
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5 ASTRID conceptual workflow 

The conceptual workflow describes the main steps that are needed to automatically manage secure 
services over virtualized environments. The definition of the workflow starts from emerging practice in 
software orchestration and insert additional elements for security that are currently neglected or 
overlooked. This approach has been given the top priority in the architectural definition, since it is 
considered a strategic point for effective exploitation of the Project results. 

5.1 Software orchestration 

The term “orchestration” is a buzzword used in many domains, often with very difficult meanings, 
ranging from control to management operations. In ASTRID, software orchestration refers to the typical 
concept in the domains of cloud computing and network function virtualization. It therefore entails the 
process of automating the deployment, configuration, and lifecycle management of software, based on 
a declarative service template. 

 

 

Figure 2. Orchestration of virtual services. 

Figure 2 shows the main elements involved in software orchestration. The ability to easily adapt 
applications to the evolving context calls for a transition from “imperative” (i.e., procedural languages) 
to declarative models, an on-going process both for cloud applications [1][2] and network function 
virtualization [3]. A declarative model defines the application as a logical topology of elementary 
functions (i.e., the service “graph”), together with a set of rules and constraints for deployment and 
operation, provided as additional metadata. The functions may refer to bootable software images, 
software packages, or generic services (e.g., relational database, web server, domain name server). The 
creation of a virtual service requires the identification of functional and non-functional requirements, 
the design of a processing pipeline, the definition of rules for deployment and life-cycle management. 
This includes the specification of monitoring flows on the service execution and the conditions (e.g., 
thresholds) for triggering specific actions (scaling, healing, replacing, removing, etc.). A service is usually 
provided as a sort of template, which has to be instantiated and initialized at run-time by the 
orchestration process. The set of information that describes how to instantiate, configure, and manage 
the service is denoted as metadata. It includes the name and version of the software, vendor, description 
(including licensing and usage terms), entry points, deployment constraints, and management hooks 
(for instance, to start, stop, reload, or reset the service, to collect measurements, data, events, log). The 
design of a virtual service roughly corresponds to the evolution of existing tasks for software architects; 
however, this role is often indicated as “Service Developer” or “Service Designer” by current standards 
and technical literature. 
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The elementary components of any service topology are (virtual) functions. Virtual functions are 
developed by programmers (hereby indicated as “software developers”) and delivered in different 
forms. The simplest form is a (compressed) archive, including either source or object code. This is a 
straightforward approach, but it is mostly unsuitable for automatic deployment and management in 
heterogeneous contexts. A slightly more sophisticated approach is the creation of packages, including 
dependencies and configuration scripts. This is currently a very common way to distribute and install 
software on UNIX-like systems, where a package manager maintains a system-wide database of installed 
packages and takes care of dependencies. This approach ensures that the correct software version is 
already installed for every dependency, but it is not easy to guarantee the stability and reliability of 
every environment that is created by the selection of different applications and their updates. Finally, 
the last option is to deliver bootable images, with pre-installed software. These can be disk images, 
suitable for bare VMs, or container images to be started in pre-installed VMs. In this approach, each 
virtual function can be thoroughly tested and certified by the vendor. Clearly, this requires additional 
roles than software developers, but we will not go in further details here. Though the size of the final 
objects is far larger than any other approach, this is the only solution that can support high-reliability 
(up to 4 or 5 nines). Virtual functions should be enriched with metadata as well to drive automatic 
deployment and orchestration. Metadata typically includes the name of the component (i.e., trademark 
and vendor), its description (including licensing and usage terms), provided functionality (e.g., web 
server, database, DNS, EPC, eNodeB, RAS), required services (e.g., database, authentication server), 
deployment constraints (e.g., number of cores, CPU speed, RAM, disk space, network bandwidth, 
hardware acceleration), measured performance metrics (e.g., packet latency and throughput, dropped 
packets, packet statistics), and management hooks (for instance, to start, stop, reload, or reset the 
function). This information is used by orchestration tools to provision the proper set of resources, set 
up and configure the execution environment, and perform life-cycle management actions (e.g., scale the 
function upon indication from the orchestrator, recover from failure). 

The actual instantiation of a service is done by the Service Provider. He deploys the service for his 
own usage (e.g., a billing application) or to provide services to end users (e.g., a virtual mobile network). 
Starting from the declarative service template, orchestration is responsible to start the provisioning 
process for virtual resources, deploy and configure the software, start all functions and execute any 
lifecycle management operation. The whole process may be totally automated, or there may remain a 
number of functions that should be carried out by human staff. We can therefore identify additional sub-
roles within the Service Provider, which correspond to human specialists in case automation is not 
present (see Figure 3). For example, when the service model only indicates the type of function but does 
not dictate a specific implementation/version, and an automatic selection process is not deemed 
appropriate or reliable, a Supply Chain Specialist may be required to recommend or identify virtual 
functions suitable for the service, also considering existing commercial relationships, cost, reliability, 
and trust aspects. For mission-critical applications, a further Acceptance Specialist may be required to 
validate, certificate, and on-board the service and its functions, guaranteeing the compliance with 
dependability policies for the specific application. The Service Deployment Manager is the sub-roles that 
is better suited for automation, given the large availability of virtualization and configuration 
management tools. 
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Figure 3: Sub-roles in the service deployment chain. 

Depending on the specific service model and virtual function delivery method, the instantiation of 
virtual functions may be limited to booting a given image or may require booting a vanilla operating 
system and installing the required software. Typical orchestration tools monitor at run-time the 
execution of the graph, by collecting measurements about used resources (CPU, RAM, disk, network), 
workload, performance (processed requests, latency) as defined in the service/function metadata. This 
data is then used to trigger lifecycle management actions, according to the policies defined by the service 
designer or the service provider. Such policies define how the system should react to events, either 
related to monitored data or triggered by the service provider. In most cases, the actions consist in 
running management scripts provided by the service/software developers. 

An overview of the main descriptive models and their impact on service orchestration is given in 
Annex A, for both cloud applications and network function virtualization. 

5.2 ASTRID workflow 

Enterprises are today considering the usage of security functions hosted and managed by external 
providers, due to the growing challenges and complexity in designing, deploying, and maintaining up-
to-date security infrastructures that complies with regulatory requirements in a cost-effective way. To 
meet this demand, more and more service providers are providing hosted security solutions to deliver 
cost-effective managed security services to enterprise customers, hence creating new business models. 
One of the main objectives for the ASTRID Project is therefore direct involvement of security experts in 
the whole orchestration workflow, which are not present in current models. They should be able to 
integrate security aspects at design time, to gain enhanced visibility on service execution, and to perform 
quick reactions at run-time. In this respect, we introduce the role of Security Provider, which 
complements the technical roles already described in the previous Section. 
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Figure 4. The orchestration business chain enhanced with ASTRID roles. 

The Security Provider operates in multiple points of the orchestration business chain, as shown in 
Figure 4. We remark that additional sub-roles may be involved in a real chain, and that different 
orchestration models imply different workflows. For the sake of brevity, we now consider a specific 
chain, without any loss of generality. In the considered model, Software Developers design, implement, 
and package VFs and sell them in a public or private marketplace. Service Developers are mostly 
analysts and software architects, which create service templates and sell them in a public or private 
marketplace. Security Providers take VFs and service templates from the marketplace and modify them. 
They can act as on their own initiative, by selecting popular or critical services, so to add value to the 
original version by including security functions that they know to be of general interest. Otherwise, they 
can operate on mandate of a Service Provider, who has already selected (or asks them to select) a 
specific service. In this phase, Security Providers assess the degree of trustworthiness of VFs and their 
providers, verify the robustness of software applications when taken alone or combined in complex 
topologies, insert additional functions and monitoring hooks to implement security services at run-time, 
and so on. Basically, they laid the foundations for security operations that will be available on the 
running service. 



 

Page 24 of 76 

 
Deliverable D1.2 

 

After getting the “revised” version of the service template and related virtual functions, the Service 
Provider deploys the service over a virtualization infrastructure. Security features that have been 
incorporated in the graph can now be activated and configured to implement several security services 
(e.g., firewalling, IPS/IDS, malware detection, remote attestation). The most general workflow for 
converting user policies into low-level configurations is shown in Figure 5. Many Service Providers and 
End Users might not have the requisite skills to identify security architectures, behavioural policies, and 
functional configurations. Instead, they are expected to express their expectations (i.e., goals or intents) 
in terms of high-level guidelines or “user security policies” (e.g., “protect the service from network 
threats”, “deploy the service in trusted infrastructures”, “protect against the injection of malware”, “bind 
the service to legal obligations for crime investigation and data protection”, etc.). The scope of security 
services may cover monitoring, response, mitigation, and investigation. Such expectations must then be 
refined into security services (e.g., firewalling, deep packet inspection, software execution tracing, 
antivirus, intrusion detection) and flow-based policies (e.g., if <average bandwidth usage is greater than 
50 Mbps> then <drop incoming packets from x.x.x.x>, when <file X is requested> if <user is not 
authorized> then <log possible privilege escalation attempt>), including their integration with the 
service graph and behavioural rules in the ECA form. Finally, flow-based policies must be mapped to a 
set of commands and configuration directives, which are activated and modified at run time according 
to the evolving context (e.g., drop packets with source address x.x.x.x, log packets with destination 
address y.y.y.y, log requests to port Y). The refinement process can be fully automated for the simpler 
user policies, but human intervention is still expected in the majority of cases. 

 

 

Figure 5. The ASTRID “security policies chain.” 

From a business perspective, externalization of security management could be an effective option, 
especially in case of critical services. The Security Provider can also undertake the responsibility to 
manage security aspects of the running service. This goes beyond the translation of user policies into 
security services and functional policies. Indeed, the Security Provider becomes in charge of assuring 
correct operation of security functions, supervising automated procedures, initiating mitigation, 
suggesting the Service Provider possible response and recovery actions on the deployed service. Clearly, 
the presence of security features in the service graph is an inescapable requirement for effective 
operation of the Security Provider. The extent to which the Security Provider operates autonomously of 
upon authorization of the Service Provider should be settled in the contractual agreements. 

Based on the preliminary considerations on the business roles and potential business models, 
Figure 6 shows the main technical aspects of an enhanced ASTRID orchestration workflow. There are 
two scopes of the ASTRID framework, tightly corresponding to the business opportunities identified so 
far for the Security Provider, that are inserted between existing processes in the orchestration workflow 
(i.e., the orange soft shapes). The pre-deployment scope enhances the plain graph design with security 
aspects, including the verification and certification of the service as well as the inclusion of additional 
components to be deployed. The run-time scope covers monitoring, detection, and reaction operations 
that are necessary for secure and trustworthy execution.  
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Figure 6. Overall workflow of the ASTRID framework. 

5.2.1 Pre-deployment scope 

The pre-deployment scope complements the plain service design with security aspects. While the 
Service Developer focuses on the business logic of the service, a Security Provider should revise the 
whole graph and its components and “enhance” the description with security functions, either on his 
own initiatives or on commission of a Service Provider. Such functions are conceived to support the 
implementation of security policies at run-time, in the same way the original metadata enables 
automatic deployment and life-cycle management. 
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There are multiple complementary ways to enhance the service description, acting on either the 
service itself or the constituent virtual functions; most of them target the availability of specific features 
at run time. First, the ASTRID concept entails the enrichment of the service graph with dedicated 
components for supporting multiple features: 

 building the logical fabric to create, collect and analyse the security context from the set of 
independent virtual functions, also including the possibility to retain data for legal investigation 
and forensics; 

 the deployment of additional components for identity management and access control, to enable 
seamless and secure interconnection with external components; 

 the inclusion of dynamic components for legal interception of the traffic; 
 segregation or obfuscation of data and traffic for privacy issues; 
 the definition of automatic reaction policies, in terms of actions to be executed when specific 

events occur or conditions are met, for instance according to a typical `if-then-else’ scheme. 

 

Figure 7. Service description enriched with ASTRID Security Orchestrator and Identity Services to connect 
to external functions/devices. 

Figure 7 pictorially illustrates the concept of graph enrichment. There are basically two types of 
components that can be used to enrich the graph: 

 stand-alone virtual functions, roughly corresponding to software versions of legacy security 
appliances (i.e., the red and green circles in the picture); 

 software co-located in the same execution environment of the original functions, which may 
be integrated in the kernel, installed as shared libraries, or deployed as standalone 
applications or daemons (i.e., the red ellipses along by the virtual functions). 

As the picture shows, the enrichment also covers (logical) communication channels to create a sort of 
security overlay above the business logic of the service graph. The purpose of this overlay will be further 
discussed in Section 6, while its practical definition and implementation falls under the objectives of 
WP2. 

The second main enhancement in the service description will be the validation and certification of 
the involved virtual functions. There are multiple actions that may be undertaken in this respect. First 
of all, the origin and integrity of the software should be verified, and the trustworthiness of the vendor 
and distribution channels should be assessed. A second step may consist in scanning the software to 
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seek out viruses, malware and known signatures. These processes could be applied to any delivery 
methods, including both source code or executables. However, depending on the output of the virtual 
function that is available (either source code or only the executable binary), different types of static 
vulnerability analysis approaches can be integrated ranging from traditional “fuzzing” techniques [24] 
to more sophisticated and dynamic concolic analysis systems [25][26].  

A more advanced enhancement is the analysis of the source code, whenever available, targeting more 
advanced dynamic control-flow attestation solutions that aim to check software behaviour during run-
time; software that will be running as expected by verifying the integrity of specific control flows. 
Towards this direction, identification of the correct (i.e., as expected from the normal execution of the 
virtual function) execution paths that will be checked during run-time for any deviations, need to be 
identified at the pre-deployment phase coupled with adequate control-flow properties and policies. We 
define a set of properties and policies to be attested as the minimal required set of execution related 
attributes that will allow the correct verification of the virtual function during run-time by attesting the 
function’s control-flow graph against these policies.  Obviously, this generates additional data that must 
be included in the service description (i.e., control-flow policies and graphs) and digitally signed to 
guarantee its origin and integrity.  

After the enhancement process, the service template is ready for instantiation. As already mentioned, 
one design target is to avoid the need for major modifications in existing tools. In this respect, the 
enhancement process is expected to modify the service description according to existing models, 
without introducing additional formalisms or capabilities. 

5.2.2 Run-time scope 

The run-time scope of the ASTRID framework gives deep visibility on the execution of the service and 
provides the means for quick reaction and mitigation actions. As already pointed out for the pre-
deployment scope, one main objective is the involvement of security experts, which become responsible 
to supervise security aspects (this is the reason why this role is indicated as “security provider” in 
Figure 6). Again, we remark that multiple activities and professional figures may be entailed by this role, 
but this is largely dependent on the specific business model adopted. 

In the run-time scope, the graph enhancements applied before deployment are used for three 
purposes: 

 initialization of the security functions that have enriched the graph; 

 building awareness about attacks, anomalies, and suspicious activities; 

 interacting with the graph to implement protection, reaction, recovery, and healing actions. 

All the above operations should be centrally managed by a security dashboard, a GUI that facilitates 
the visual representation and control of the on-going situation. Through the security dashboard, the 
security provider gets a real-time picture of relevant events and data, pin-pointed to the relative position 
in the service graph. The dashboard is also used to define policies, which may be expressed in different 
forms depending on the skills of the specific user. Service providers and end users will select high-level 
user policies, whereas security providers will typically define ECA policies; the latter can be easily 
refined in specific commands and operations (for example, close a given port on the firewall when the 
amount of traffic suggests a possible DoS, freeze a virtual function if there is evidence of corruption). 
The dashboard can also be used to conduct investigation on suspicious activities, which may be 
symptomatic of new threats or unknown attack vectors. In this respect, the security provider can inject 
different configurations and programs for monitoring and inspection hooks, so to increase the verbosity 
and capillarity of the security context according to the current needs, and can manually trigger 
orchestration actions (for example, removing or replacing a compromised function, deploy additional 
inspection or mitigation functions, steer packet flows, isolate the service graph in a honeypot, duplicate 
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traffic for interception). The same type of intervention is also required upon requests from the court, 
authorized law enforcement offices, or auditors, as pictorially shown in the bottom part of Figure 6. 

The dashboard is conceived as the main operational tool for the security provider, but it may also be 
used for sending tailored notifications to end-users. As a matter of fact, due to legal obligations or 
internal transparency policies, a service provider may be concerned to keep his customers aware about 
possible threats to their personal data or service availability, so that proper countermeasures could be 
implemented on their side (for instance, remove sensitive records, suspend or move away critical 
activities).  

Run-time analytics are responsible for automatic processing of the security context. Through 
orchestration, all security hooks defined by the enrichment process are deployed in the execution 
environment. The security hooks monitor the virtual functions and the network traffic exchanged in 
between; logs, statistics, events, and other relevant information are therefore collected and delivered to 
a central location for analysis. Decoupling data collection from data processing is one of the main pillars 
of the ASTRID concept, and enables the definition of a great range of detection algorithms. 

Run-time analytics are therefore a collection of heterogeneous algorithms, including both legacy 
appliances (e.g., IDS/IPS, antivirus, anti-DoS) and more advanced anomaly detection techniques that 
could leverage cross-correlation of data from multiple heterogeneous sources. Part of these algorithms 
will be able to detect known attacks from their signatures or behavioural patterns, hence triggering an 
alarm. Other algorithms will only detect anomalies, so to raise a warning in case of suspicious behaviour 
that needs further investigation. In both cases, the dashboard will be notified. 

Initialization and reaction is a compound process that, as the name implies, entails complementary 
actions in different phases of the service lifecycle. Initialization is conceived to assist the main 
orchestration process in the preliminary configuration prior to starting the service. Typical tasks for 
initialization include: 

 configuration of firewalling rules to protect the virtual functions and links; 

 installation of monitoring and inspection programs in the service graph according to security 
policies; 

 configuration of the sink(s) for collection of monitoring information; 

 configuration of access points for programmable hooks in the service graph; 

 instantiation of the security services defined in the enhancement process; 

 instantiation of identity management and access control. 

Reaction encompasses several actions as mitigation, reconfiguration, restoration, and healing that are 
undertaken in response to particular events or conditions, usually aimed to respond to (possible) 
attacks. Reaction can work in three alternative ways: 

 fully automated: the framework reacts to specific conditions based on pre-defined rules, 
without any intervention from humans. This is only possible for well-known threats. For 
example, a packet filter may be installed when the traffic streams grow beyond a given 
threshold. Another example is the request to isolate or remove a virtual function upon 
indication of intrusion. 

 semi-automated: in case of unknown or complex attacks, pre-defined policies might not be 
able to cover all possible situations or variants, so the system may only partially respond 
automatically and wait for further inputs from humans. This may be the case of anomalous 
(yet not overwhelming) flows of packets that are temporarily blocked while waiting for 
additional actions from the security provider. 
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 supervised: the system is able to react autonomously, but the likelihood or impacts of possible 
errors suggest confirmation from humans. In the same example as the previous point, the security 
provider is asked the permission to block the traffic, so to avoid disrupting any critical activity. 

Automatic reaction shortens response times and unburden humans from mechanical and repetitive 
tasks. However, full awareness and the need for post-mortem analysis recommend keeping track and 
report any action to the dashboard, at least to give visibility of the occurrence of attacks. This aspect is 
graphically implied in Figure 6 by the folded arrow between the analytics and reaction blocks, which 
always involves the security dashboard. 

6 System architecture 

Consistently with the workflow outlined in Section 0, the ASTRID architecture enhances emerging 
orchestration practices without demanding full re-design of existing tools. That means that the 
architecture can be described in terms of additional components, corresponding to the specific ASTRID 
scopes in the workflow. 

6.1 Legacy architecture (Business-as-Usual) 

Following the same approach used in the previous Section, we start by elaborating on the main 
elements for service orchestration, which are depicted in Figure 8. We already discussed the main 
elements of service orchestration, and we are now going to give more details about these elements and 
their implications on the service model and instance by comparing them side by side in Figure 8. 

 

Figure 8. A typical architecture for software orchestration. 
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A service description includes the constituent elements of the service: virtual functions, relationships, 
deployment constraints, and management policies. The service topology is perhaps the most important 
part of this description, since it represents the logical relationships between the functions. The nodes of 
the graphs correspond to virtual functions. They can be given either as unambiguous references to 
software objectives (for instance: “Apache HTTP Server v. 2.4.38”, “PostgreSQL rel. 11.2”, “pfsense v. 
2.4.4”) or more abstract function types or classes (for instance: “Web server”, “Relational database”, 
“Stateful Packet Firewall”). While the association between nodes and virtual functions is rather similar 
in different models, the relationships given by links may be very different. In TOSCA [5], the links 
represent configuration dependencies and imply a coherent configuration of some parameters at the 
endpoints. They can also indicate communication paradigms like client-server and publish-subscribe. 
For instance, one node may be an HTTP server and the other node a SQL database. A link between these 
components means: “HTTP server needs a SQL database”, and implies the configuration of database’s IP 
address and port, username and password, database name, etc. This approach is typical of Model-Driven 
Engineering and is mostly used for cloud applications. It is the model followed by orchestration tools as 
Juju2, CloudML3, and Cloudiator4. In the NFV domain, the links correspond to communication channels: 
physical transmission lines, virtual links, VLANs, MPLS links, GRE/IPSec tunnels, etc. They often imply 
the configuration of packet forwarding/filtering rules, based on the values of some header fields 
(destination, QoS, source, TTL, identification, tags, etc.) and external conditions (e.g., queue size, time, 
location). Both ETSI MANO [8] and IETF SFC [9] follow this model. A few examples of compliant 
orchestration tools include: OpenBaton5, OpenNFV6, and OpenMANO7. Some more details on 
orchestration models for the interested readers are given in Annex A.  

Some models support the design of very generic templates for virtual services, allowing the definition of 
multiple topologies, scaling policies, management actions, and forwarding rules (this is the case for the ETSI 
NFV framework [7]). This is intended to sell a common service (e.g., virtual mobile network, M2M private 
network, VoIP service, VPN, gaming platform, Smart Grid) that may be tailored by service providers to their 
different customers. This business case is relevant for very common services and large vendors, with a 
potential market of thousands or millions of instances. However, the software industry has already 
demonstrated the remunerative of other business models, where many competitive services are designed, 
developed, and directly commercialized by a plethora of SMEs to their customers. In this second case, the 
worth of commercialization of such descriptions is marginal. Given the diversity of business models, the 
delivery of virtual services is not explicitly shown in Figure 8 for the sake of generality. 

The diversity of orchestration paradigms, models, and standard is also reflected on the creation of 
virtual functions. As a matter of fact, the same software needs different metadata to be handled by the 
different orchestrators. We briefly recall that, in addition to identification and versioning, metadata are 
used to expose capabilities, configurable parameters, management hooks and scripts; these elements 
are very different for every orchestration model, as can be easily inferred by the very synthetic 
description above. Differently from virtual services, virtual functions are expected to be largely reused 
in different services. The need for the widest availability, the possibility to select the best 
implementation at run-time, the lower profitability in building this kind or products, and the larger 
expected competition motivate the presence of a public marketplace for trading virtual functions. As 
already noted in the previous Section, the selection and on-boarding processes may be fully automated 
or rely on human skills. 

                                                             
 
2 https://jujucharms.com/. 
3 https://github.com/SINTEF-9012/cloudml. 
4 http://cloudiator.org/. 
5 https://openbaton.github.io/. 
6 https://www.opnfv.org/. 
7 http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab/openmano. 
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The main tasks for a service orchestrator are service deployment and management. Based on the 
service description and the policies set by the service provider, the orchestrator creates the execution 
environment and instantiates the software. The creation of an execution environment is facilitated by 
cloud paradigms and pay-as-you-go models, which provide management APIs for dynamic provisioning 
of computing, storage, and networking resources8. Open-source and commercial CMS (OpenStack, 
Microsoft Azure, Google Cloud Services, AWS, VMware vSphere) currently uses very different APIs, 
without considering the still evolving landscape for network slicing. However, the heterogeneity of the 
underlying virtualization infrastructure is totally managed by the orchestrator and does not have a 
direct impact on the ASTRID framework. What is indeed relevant for ASTRID, is the instantiation of the 
virtual service in the virtual resources.  

As pictorially shown in Figure 8, each virtual function typically corresponds to a different execution 
sandbox. This facilitates management of the virtual functions. An execution sandbox may be a VM or a 
software container. The distinction is not relevant at this stage, so we will typically refer to VMs without 
any explicit preclusion of other forms of virtualization. The execution of a VF would likely require some 
libraries or daemons, and, in case of VM, an operating system. The deployment of the VF depends on the 
software distribution method. If the VF is packaged as bootable disk image, the orchestrator is only 
responsible to feed the CMS with such image. If the package only contains the executable code of the VF 
(or a link to it), the orchestrator has to boot a vanilla kernel (fulfilling the possible constraints in the VF 
package) and to install the required software and its dependencies (typically leveraging some package 
management tool). In any case, after deployment, the orchestrator is still responsible for the 
configuration of the VFs according to the service template specification. This may include IP addresses, 
port numbers, usernames and passwords, number of replicas and threads to activate, and so on. 

Most of the automation implied by the processes described so far is already possible through 
configuration management tools as Puppet, ANSI, Chef. The distinctive trait of a modern orchestrator is 
the capability to monitor software execution and react to the evolving context. The necessary awareness 
is built by monitoring a number of different parameters, partially provided by the virtualization 
environment and the guest OS (for instance, CPU/RAM/disk/network usage) and partially provided by 
the VF itself (this may include, for example, number of processed requests, average service time, 
dropped requests, failures or internal errors, number of objects stored in a database, number of active 
users). The presence and structure of the former are known given the specific CMS/OS, whereas the 
presence and structure of the latter must be explicitly defined in the metadata of the VF. All this data 
feeds a run-time context database, which content may be further processed and compared with 
conditions (e.g., thresholds) to trigger management actions. The abstraction and implementation of life-
cycle management is very different for different orchestration model and is not relevant for the 
definition of the ASTRID architecture, so we will not go into more details here. 

6.2 ASTRID architecture 

The ASTRID architecture is logically organized in three layers, corresponding to different operations 
and timing requirements. The layers are named data plane, control plane and management plane; they 
are taken from common networking architectures and are adopted to facilitate the identification of 
logical functions and the comparison with other frameworks (see Section 8). Figure 9 shows the 
relationship between the three planes and the main logical functions of the ASTRID framework. 

                                                             
 
8 We recall that, despite of the existence of alternative cloud models, the ASTRID project only focuses on IaaS. 
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Figure 9. The three layers of the ASTRID framework. 

At the bottom of the framework stack, the data plane creates and processes the security context 
(events, logs, statistics), including inspection, enforcement, collection, aggregation, and analysis 
operations. It operates in a deterministic way, according to imperative behavioural statements, 
configurations and parameters set by the control plane. In ASTRID, the data plane is partially 
implemented within the service, by embedding monitoring, inspection, aggregation, and enforcement 
hooks in the execution environment of the virtual functions, and partially implemented as external 
component, by abstraction, fusion, and analysis operations on the set of collected data.  

On top of the data plane, the control plane takes decisions based on the evolving context. The control 
plane programs the data planes, selects security functions and configures them, reacts to system events 
according to behavioural policies set by the management plane, manages authentication, authorization 
and access control to the different components of the data plane. The scope of reactions is not limited to 
the data plane, but also extends to the management plane, in case some modifications to the running 
service are requested. In ASTRID, the control plane is mostly an external component, though some it is 
also partially present in the execution environment of virtual functions to configure the embedded 
security hooks. 

Finally, the management plane is a side component alongside both the control and data planes. The 
management plane defines the behaviour of the system in the mid/long term. It includes tasks as 
instantiation and configuration of components in the data/control planes, translation of high-level 
intents and goals into commands and control policies, monitoring of operational parameters to detect 
deviations and malfunctioning, interaction with other systems/components. In ASTRID, the 
management plane includes a User Interface to interact with the whole system; this enables direct 
investigation of unknown or complex attacks. Graph editing is typically a manual operation to modify 
the original service description so to account for security features, as described in the pre-deployment 
scope (Section 5.2.1); it includes the definition of both additional components (data plane) and reaction 
policies (control plane). Graph management will provide the ability to modify the service at run-time, 
so to stop, mitigate, or react to attacks; this will largely leverage existing orchestration tools and will 
partially integrate with the BAU architecture shown in Section 6.1. Finally, deployment and life-cycle 
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management takes care of those components that are not directly managed by the service orchestrator. 
For example, this may consist of management tools for big data infrastructures or cloud security 
services. This component might not be present when all ASTRID components are deployed and managed 
by the same service orchestration tools (see deployment and instantiation options in Section 6.6). 

Based on the logical functions identified in each layer, Figure 10 shows the ASTRID architecture in 
terms of functional components and how it positions with respect to the BAU scenario. We point out the 
distinction between the ASTRID components and legacy orchestration tools. This architectural choice is 
motivated by the effort to ensure compatibility and portability to existing solutions. ASTRID remains 
agnostic of specific orchestration models: the general framework will be developed outside of any 
orchestration tool, while specific binding (acting like drivers) will allow interaction with those tools to 
dynamically adapt the graph to the evolving context and to react to incidents and attacks. To 
demonstrate the portability of the whole framework, different orchestration models have already been 
selected at the proposal stage for the Use Cases; the implementation will evaluate the effort to develop 
the specific drivers. 

To help distinguish the ASTRID components from those already present in the BAU scenario, the latter 
are greyed. In the middle of the picture we find the BAU components. The left side of the picture depicts 
the ASTRID architectural components and their relationship, and the right side shows their implication 
on the service model and instance. The components of the run-time subsystem below the Security 
Controller (with the exception of the Idm) are part of the data plane, whereas the Idm, Security 
Controller and upper components are the control plane. In the execution environment we have both 
control and data plane for ASTRID agents, corresponding to configuration and processing tasks, 
respectively. The Security Dashboard, the service orchestrator, and the pre-deployment subsystem are 
part of the management plane. The last element is considered management because it defines security 
services that will be available at run-time but does not execute them. 

 

Figure 10. ASTRID architecture. 
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The preliminary consideration is that the two scopes of intervention in the conceptual workflow are 
reflected in the presence of two separate subcomponents. This separation is necessary to reflect the 
different level of automation that can be achieved in the two scopes, and to support multiple business 
models. The Security Dashboard is represented as a single component, but it entails a number of 
management functions that could be split in multiple tools for the different players; again, this should 
support multiple business models. These aspects will be analysed in WP5, where some possible business 
cases will be analysed and linked to exploitation plans for the Consortium partners. 

According to the conceptual workflow, the description of virtual services and VFs are elaborated by 
the ASTRID pre-deployment subsystem, before being made available for deployment. This phase is 
largely transparent to service providers; the only meaningful difference is the place where such 
descriptions are retrieved from. As discussed in the previous Section, the pre-deployment subsystem is 
expected to modify the service graph, but its output must be compliant with the service model the 
orchestration understands. 

Once the enhanced service has been deployed by the service provider, the run-time subsystem is 
automatically connected to the service and retains control over security features.  Some remediation 
and mitigation actions can be implemented directly via the ASTRID framework (i.e., enforcement 
hooks), whereas topology changes on the service graph must be asked to the service orchestrator. 

Finally, we note that the presence of the Security Dashboard in between the two subsystems also 
points out that they cannot operate independently. Indeed, the pre-deployment stage inserts additional 
metadata to the service, including security capabilities added to the graph, security policies to be 
fulfilled, and results from static source code analysis. This information is transparent to the service 
orchestrator, but must be shared in some way between the two subsystems.  

6.3 Pre-deployment subsystem 

The pre-deployment subsystem enhances the original service graph under the supervision of a 
security expert. Through the security dashboard, the security provider revises the whole graph and its 
individual components. The main purposes are the evaluation of the software and the inclusion of 
additional components for run-time control and management. 

6.3.1 Software analysis 

As aforementioned, to keep up with the amount of services that must be vetted for vulnerabilities, a 
hybrid approach is needed capable of performing vulnerability analysis of the virtual function software 
and executable both before its deployment but more importantly during run-time. 

For the former, the most straightforward and immediate analysis of software versions is against 
already known vulnerabilities and exploits as have been identified in threat intelligence markets 
(e.g., Common Vulnerabilities & Exposure – CVE - Database). This essentially tries to identify “exploit 
signatures” that may be present in a software, prior to its deployment, and can be manipulated for 
launching more devastating attacks. Outdated, unpatched, or vulnerable software are sources of 
potential threats that must be compared with the final application prior its placement in the ASTRID 
trusted repository (Section 6.3.3).  

In addition to this mechanism and in order to be able to verify the trustworthiness of the software to 

be deployed against a wider vector of vulnerabilities, ASTRID will also integrate more advanced 

dynamic analysis systems including “fuzzers” and concolic execution engines. Dynamic analysis 

systems [24], such as “fuzzers”, monitor the native execution of an application to identify flaws. When 

flaws are detected, these systems can provide actionable inputs to trigger them. They require the 

generation of adequate “test cases” to drive the execution of the vulnerability analysis process. Concolic 

execution engines [25][26] utilize program interpretation and constraint solving techniques to generate 

inputs to explore the state space of the binary, in an attempt to reach and trigger vulnerabilities.  
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 Despite the efficiency of such approaches, they are mainly used for software vulnerability assessment 
during the pre-deployment phase. However, a more challenging step is the ability to be able to also 
detect any vulnerabilities/attacks performed against the deployed functions and services during run-
time. Towards this direction, ASTRID will investigate the provision of more advanced control-flow 
property-based attestation (CFPA) mechanisms (Section 6.4.5) aiming to perform an in-depth analysis 
of the running software behaviour; software that is running as expected by verifying the integrity of the 
entire control-flow of the service. This is useful per se to identify dangerous or unexpected behaviours, 
but it also feeds the run-time processes that monitor the execution and should verify the legitimacy of 
the responses to external stimuli. 

In a nutshell, CFPA provides the ability to check any deployed function or service for any deviations 

from their normal execution flow; this allows for a deeper investigation of any abnormalities (that can 

be a result of an attack) without limiting the attack vector to only specific types of vulnerabilities. For 

this, however, what is needed is the identification and definition of adequate Control-flow Properties 

& Policies against which the CFPA will check the correctness of the execution flow of an application. We 

define a set of properties to be attested as the minimal required set of execution related attributes that 

will allow the verifier to confidently detect any control-flow deviations. These properties directly map 

to specific security-critical subsets of the application control-flow graph that need to be identified 

beforehand. They might include but not limited to: the current firmware version it is running, the 

version of its configuration file or presence of certain hardware properties, execution paths to specific 

memory regions, ports and network interfaces, etc. The aim of this approach is to reduce the size of the 

attested binaries, thus, reducing the strain and the computational overhead on the system, while 

sustaining a high level of assurance.  

The output of this block is expected as additional metadata that reports: 

a) An assessment of the appropriateness of the service for applications with different levels of 
criticality. The criticality of an application for the Smart Grid is very different from that of a 
web blog application. 

b) The outcomes of static software analysis and the relationship between inputs and expected 
outputs. 

c) The set of Control-flow Properties & Policies that will be used for attesting the integrity and 
correctness of the deployed application during run-time. Essentially these will include the set 
of: (i) the expected Control-flow Paths (CFPs) for the application in the sense that any 
deviation out of these CFPs will be flagged as suspicious, and (ii) specific properties to be 
measured during run-time for the successful completion of the attestation. 

6.3.2 Service enrichment 

Run-time monitoring, analysis, and protection of the virtual service relies on the availability of 
security enablers in the deployed graph. Service enrichment adds these components to the original 
graph, so that they can be automatically deployed by the service orchestrator. 

The ASTRID architecture envisions the addition of the following types of components: 

i. Log collectors. 
ii. Execution hooks. 

iii. Legal validators. 
iv. Standalone cyber-security appliances. 
v. Run-time subsystem. 

Log collectors are agents that gather logs from applications, daemons, and the kernel, aggregate 
them, and fill a remote database. They hide the heterogeneity of formats and interfaces, can filter and 
aggregate data, and sometimes provide data fusion capabilities. They are primarily co-located with VFs 



 

Page 36 of 76 

 
Deliverable D1.2 

 

(and depicted as orange ellipses in Figure 10), but some components for data aggregation might be 
deployed as independent VFs. There is no need to explicitly specify the remote database in the graph, 
since this will be part of the run-time subsystem. D1.1 reported many frameworks already available for 
this purpose; from an architectural perspective, the main guideline is to select agents that support 
remote programmability at run-time. 

Execution hooks are triggered upon invocation of internal functions and access to system resources. 
One primary interest is the analysis of network traffic, which represents one of the main threat vectors. 
In this respect, among the variety of data plane technologies listed in D1.1, the eBPF emerged as the best 
technology for ASTRID, given its uncommon characteristic to be linked to any kernel function, including 
system calls and network I/O. The eBPF is fully programmable, and this represents another priority 
requisite for dynamic adaptation of monitoring and inspection tasks. In the same way of log collectors, 
the eBPF must be co-located with VFs as well (again, the orange ellipses in Figure 10, this time limited 
to kernel scope). The eBPF is implemented in the kernel, so from the service description perspective 
this turns into a deployment constraint (for instance, the selection of the right bootable image). Control 
of the eBPF is done through external agents, which must therefore be included alongside the VF. 

Legal validators are responsible for timestamping, encryption, integrity, digital signing and any 
other operation intended to give legal validity to data and events. The validation process may introduce 
latency and overhead in the collection process; in this case, it should only be limited to relevant aspects 
to fulfil legal obligations (e.g., on privacy) and to be used as evidence in court. 

Standalone cyber-security appliances are the virtual versions of legacy firewalls, IPS/IDS, 
antivirus, etc. The deployment of this appliances consumes more resources than the embedded 
elements, and thus should be avoided as much as possible. Indeed, the provisioning of one additional 
VM with its own kernel and network interface would require additional CPU, RAM, disk, and network 
resources; instead, embedded components as log collectors and eBPF are expected to have negligible 
resource consumption compared with VFs9. However, they might be necessary to mitigate or investigate 
in depth particular attacks, so we do not completely preclude their (maybe limited and temporary) 
usage. 

Finally, the run-time subsystem may be deployed at run-time as well, to dynamically instantiate a 
fully working ASTRID environment (orange circle), as further elaborated in Section 6.6. Clearly, the 
deployment of the run-time subsystem as part of the service graph must be subject to sever deployment 
constraints on the trustworthiness, dependability, and security of the underlying virtualization 
infrastructure.  

6.3.3 ASTRID trusted repository 

This repository collects virtual functions and services compliant with the ASTRID framework. It is 
equivalent to any other VF/service marketplace, so any service provider that wants to use the ASTRID 
security framework has only to select the ASTRID repository. 

According to best practice for software distribution, the ASTRID trusted repository should provide 
integrity mechanisms as checksum computation and digital signs. The certification of services and VFs 
is already envisioned by some specifications (for instance, see Clause 6.2.5.2 of [7]). 

6.4 Run-time subsystem 

The run-time subsystem is the “smart” core of the ASTRID framework, bringing autonomicity and 
dynamicity to more traditional detection frameworks. In this respect, it represents the implementation 
of a security orchestrator. The run-time subsystem controls and programs the monitoring and 

                                                             
 
9 The verification of this assumption will be part of validation and performance analysis of the ASTRID framework. 
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inspection agents in the service graph, collects data and measurements, feeds detection algorithms, and 
supports human staff with semi-autonomous decisions. The interaction among the different 
components in the run-time subsystem is driven by a common representation of the available data and 
capabilities, which are collectively denoted as the “security context model.” The security context model 
may include the following data: 

 security logs generated by the virtual functions;  
 security events generated by the virtual functions; 
 encryption capability to protect both user data as well as control data exchanged within the 

ASTRID security framework; 
 trust and privacy requirements for connecting and exchanging data with other functions;  
 identity and access control capability, that can be used to authenticate external entities, set 

access rights, trace commands, etc.; 
 certification, timestamping, and digital signature capability that may be used to guarantee the 

origin and integrity of security data generated by the function; 
 traffic mirroring and other replication capabilities that can be used for legal interception of 

data flows; 
 retained data that may be used for criminal investigation; 

subsets of the application’s control-flow execution graphs when the attestation of the software 
correctness and integrity fails; as a result of a potential software compromise. 

6.4.1 Execution environment 

Figure 10 shows how the enriched service description results in the deployment of additional 
components at run-time in the execution environment (indicated as orange ellipses in the pictorial 
representation of the service topology in the Cloud/NFV Infrastructure). We remind that the installation 
and configuration of the execution environment remains a prerogative of the service orchestrator, 
which at deployment time takes care of installing all the libraries, proxies, and agents required by the 
security enrichment. 

ASTRID components in the execution environments are in charge of monitoring and inspection tasks 
at different layers of the software stack. They include: 

 Kernel hooks (i.e., eBPF programs), that work in the kernel and monitor network traffic and 
system calls10. As previously noted, the eBPF is implemented in the kernel, but needs a 
userland control agent for remote control and exportation of the data. The kernel component 
is an execution virtual machine to run eBPF programs. The latter are injected through the 
control agent. 

 Log agents that work in user-space and collect logs from libraries, daemons, and even the 
kernel, so their scope extends to the whole stack. 

 VF-defined monitoring information is conceived to drive orchestration actions11, but might 
also be used for detection purposes. They are built-in in the software of the VF, not part of the 
ASTRID enrichment process. Subscription and configuration to these sources are specific for 
each orchestration model and can be managed by a set of plug-ins. 

Additional components or functions in the execution environment are expected to give legal validity 
to the collected information. They could be deployed as standalone agent and inserted in a local 
processing pipelines, or directly integrated in other agents (for example, they may be programs part of 
                                                             
 
10 eBPF programs can be attached to any kernel function, not limiting the scope to system calls and packet handling. However, 
such scope is considered enough for the objectives of the Project. 
11 As an example, we can mention the VnfIndicator and MonitoringParameter information elements in the ETSI VNF 
descriptors (see Clause 7.1.11 of [10]). 
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an eBPF chain). The exact nature of these components and their integration with the other local agents 
will be specified in the updated version of the ASTRID architecture, based on the outcomes from Task 2.5. 

The interaction with the execution environment also requires the setup of communication channels, 
for both control and data messages. These communication buses between virtual functions and the 
ASTRID run-time are secure channels deployed by the service orchestrator. There are multiple 
implementation alternatives envisaged at this stage: 

I. In-band. The simplest approach would be to use virtual network(s) in the IaaS already used 
for communication between the VMs. This does not require any specific effort on the 
orchestration side, but the traffic for data collection may overwhelm the network and should 
be recognizable so as to not alter traffic statistics for detection purposes. In addition, though 
the usage of encryption is taken for grant, there are still security concerns in mixing the 
management and service data traffic. 

II. Out-of-band in the service graph. The instantiation of a dedicated virtual network for the 
control and data channel looks a better approach with minimal overhead on service 
management. In this case, the enrichment process must envision an additional virtual NIC for 
each VM and a service-wide flat network connecting all VMs and the run-time subsystem. The 
need for separate virtual networks for the control and data channels will be considered in the 
technical activity and reported in the updated architecture. 

III. Out-of-band in management interfaces. The underpinning assumption for automatic life-cycle 
management through service orchestration is i) the access to monitoring and context 
information about the execution of VFs and the network service, and ii) the possibility to 
interact with VFs to trigger management scripts. That means a management channel must be 
available outside the execution environment. An example of management channel is the Ve-
Vnfm interface in the ETSI MANO architecture [8], which may correspond to the control 
network of OpenStack or a physical network for Docker containers. 

6.4.2 ASTRID Security Controller 

The Security Controller represents the most valuable part of the run-time subsystem, conceived to 
automate as much as possible the behaviour of the whole framework. It positions between the reaction 
and mitigation policies and the context, and orchestrates security functionalities. We intentionally avoid 
the term “orchestrator” because it works at the control layer, while service orchestration involves 
typical management operations. Overall, we consider the whole ASTRID run-time subsystem as security 
orchestrator. Moreover, this nomenclature is consistent with other initiatives in this field (see 
Section 8). 

Overall, the Security Controller will work according to an Event-Condition-Action pattern, where 
events are triggered by detection or management entities, conditions come from the current context 
(graph topology, security configurations, data and events), and actions entails modifications of the 
security hooks (monitored data, frequency, granularity, filtering, marking, etc.), re-configuration of the 
detection algorithms, changes in the service graph. ECA rules are expressed by policies, which represent 
the real “smartness” of the Security Controller and encompass both reaction and prevention actions. 
According to this description, the role of the Security Controller is comparable to an SDN controller, 
which mediates between network applications (reaction and prevention policies, in our cases) and the 
underlying data plane. 

As briefly mentioned above, the control scope of the Security Controller is rather broad and 
encompasses both the management and data planes. With respect to the management plane, the 
Security Controller works in tight cooperation with the service orchestrator. It expects the description 
of the grounded graph (including the actual number of instantiated virtual functions and networks), as 
well as notification of relevant events, including initialization, start, scale, topology change, stop, 
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removal. The Security Controller also sends indication about VF that got compromised, vulnerabilities 
found in some components or their configurations, topology changes (insertion/removal/replacement 
of virtual functions), configuration changes (insertion/removal/replacement of security functions), and 
so on. The Security Controller may send commands directly to the service orchestrator or to the Security 
Dashboard, depending on the operational mode (autonomous, supervised, manual). 

With respect to the data plane, the Security Controller instantiates and configures detection and 
analysis algorithms. For instance, if a service only requests protection against remote access, the 
Security Controller will instantiate a firewall module. If the service requests protection against DoS, the 
Security Controller will instantiate both a DoS detection algorithm and a DoS mitigation module. If the 
service requests protection against misuse, the Security Controller will instantiate an IPS algorithm, and 
so on. The Security Controller also re-program the execution environment, leveraging the abstraction 
offered by the Context Broker. The main technical challenge here is the definition of common actions at 
the policy level and their translation into configurations and code for the heterogeneous set of security 
hooks. In the current architecture, this will be realized by selecting pre-defined programs and 
configuration files from an internal library, but the long-term ambition would be the definition of 
dynamic code generation and run-time compiling. 

We can give a concrete example of how the Security Controller is expected to behave in case of DoS 
service. Detection of volumetric DoS is typically based on analytics on the network traffic. Since deep 
inspection of the traffic leads to high computational loads and latency, an initialization policy only 
requires statistics about on the aggregate network traffic that enters the service, which may be collected 
by standard measurements reported by the kernel. The same policies also initialize an algorithm for 
network analytics and sets the alert thresholds. Upon detection of an anomaly in the traffic profile, an 
event is triggered and the Security Controller invokes the corresponding DoS policy. The policy now 
requires finer-grained statistics, and the Security Controller selects an eBPF filter for packet 
classification, installs and configures it. The policy also requires the detection algorithms to work with 
the broader context information available. As soon as the analysis comes to a new detection, it triggers 
a new alert, this time including the relevant context (i.e., identification of suspicious flows, origins, etc.). 
Before taking the decision about how to react, the mitigation policy may evaluate some conditions to 
check if the suspicious flow comes from an expected user of the service, has been previously blacklisted 
or whitelisted, is acceptable based on previously recorded time series. The actions to be implemented 
(e.g., dropping all packets, dropping selected packets, redirecting suspicious flows towards external DoS 
mitigation hardware/software, stop the service, move part or the whole service to a different 
infrastructure) is therefore notified to the Security Controller, which again translates them in a set of 
commands for the external service orchestrator and/or configurations and programs to be installed in 
the execution environment. Notifications about the detected attack and the implemented actions are 
also sent to the Security Dashboard. In this respect, we recall that the Security Controller can work in 
fully-automated, semi-automated, or supervised mode. 

6.4.3 Context Broker 

One of the main distinctive characteristics for the ASTRID framework is programmability, that is the 
capability to shape the depth of inspection according to the current need, in both spatial and temporal 
dimensions, so to effectively balance granularity of information with overhead. As already noted, this 
goes beyond mere re-configuration of individual components and their virtualization environments. 
This would change the reporting behaviour by tuning parameters that are characteristics of each app 
(logs, events), network traffic, system calls (e.g., disk read/write, memory allocation/deallocation), RPC 
toward remote applications (e.g., remote DB). Indeed, programmability also includes the capability to 
offload lightweight aggregation and processing tasks to each virtual environment, hence reducing 
bandwidth requirements and latency. 

The first task for the Context Broker is to manage the heterogeneity of sources and protocols, which 
is reflected in different data and control interfaces. The Context hides this heterogeneity and exposes a 
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common data model to the other components in the run-time subsystem, both in the data and control 
planes, for discovering, configuring, and accessing the security context available from the execution 
environment. The Context Broker implements most of the data plane functions in the run-time 
subsystem (see Figure 9): data collection, data storage, data abstraction. 

Data collection. The Context Broker collects data from monitoring and inspection processes deployed 
in the execution environment (data channel in Figure 10). The Context Broker hides the heterogeneity 
and asynchrony of the sources, organizes historical data, and provides simple querying and fusion 
capabilities in data access. The Context Broker may also separate data with legal validity from the main 
flow, if such information must be kept in a distinct repository so as to fulfil normative requirements 
(Task 2.5 will provide a definitive answer to this issue). The Context Broker also offers a homogeneous 
control interface for configuring and programming different data sources, by implementing the specific 
protocols (control channel in Figure 10). Since the implementation of all possible protocols clearly falls 
outside of the Project scope, the Context Broker must follow a modular architecture, where different 
sources can be supported by developing simple extensions (i.e., plug-ins).  

Data storage. Given the very different semantics of the context data, the obvious choice is non-relation 
databases (NoSQL). This allows to define different records for different sources, but also poses the 
challenge to identify a limited set of formats, otherwise part of the data might not be usable by some 
detection algorithms. The validity and volume of data affect the size of the database and the need for 
scalability. Local installations are suitable when the data are kept for days or months, but cloud storage 
services may be necessary for longer persistence or larger systems. On the other hand, remote cloud 
storage is not suitable for real-time or even batch analysis. Another design issue is the possibility to 
scale-out horizontally and/or inborn support for parallel processing and big data analytics, if data 
volume becomes large. 

Data abstraction, fusion, and querying. The flexibility in programming the execution environment is 
expected to potentially lead to a large heterogeneity in the kind and verbosity of data collected. For 
example, some virtual functions may report detailed packet statistics (i.e., those at the external 
boundary of the service), whereas other functions might only report application logs. In addition, the 
frequency and granularity of reporting may differ for each VF. The definition of a (security) context 
model is therefore necessary for detection algorithms to know what could be retrieved (i.e., capabilities) 
and what is currently available, how often, with each granularity (i.e., configuration). Correlation of data 
in the time and space dimensions will naturally lead to concurrent requests of the same kind of 
information for different time instants and functions. In this respect, searching, exploring and analysing 
data in graph databases should be considered as implementation requirement. Indeed, unlike tabular 
databases, they support fast traversal and improve look up performance and data fusion capabilities. 
Finally, the last implementation requirement is the ability to perform quick look-ups and queries, also 
including some forms of data fusion. That would allow clients to define the structure of the data 
required, and exactly the same structure of the data is returned from the server, therefore preventing 
excessively large amounts of data from being returned. This could turn very useful during investigation, 
when the ability to understand the evolving situation and to identify the attack requires to retrieve and 
correlate data beyond typical query patterns. 

The security context retrieved by the Context Broker contains a lot of information about service usage 
patterns, users, exchanged data, and so on. Access to this data should therefore be limited to authorized 
roles and algorithms. In addition, configuration of the remote data plane must remain a prerogative of 
the security controller and trusted policies, so it is important to track the issuer of such commands. The 
Context Broker is therefore expected to enforce access policies settled by the Idm module.  
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6.4.4 Programs library 

The ASTRID programs library is a collection of software that can be injected into the programmable 
hooks present in the execution environment. Different languages can be used by different hooks: ELF 
binaries, java bytecode, python scripts, P4/eBPF programs. Such programs are written and compiled 
offline, and then pushed in the repository by the Security Dashboard. They also include metadata for 
identification and description, so to be easily referred by the ASTRID Security Controller. The scope of 
ASTRID programs includes monitoring, inspection, and enforcement actions; it is clearly limited by the 
instruction set of the execution virtual machine (if any). 

From a security perspective, the current architecture assumes that the ASTRID programs are safe. 
This is implicitly guarantee, for example, for the eBPF, where the code is executed within an execution 
sandbox. In case of general-purpose languages, the correctness and safety of the source code might be 
verified by static source-code tools, similarly to what happens for virtual functions12. 

6.4.5 Detection algorithms 

Detection algorithms process, analyse and correlate security-related data and events. They can be 
mapped to existing security functions (DoS detection, IPS, IDS, antivirus, etc.). They are fed by the 
Context Broker, rather than implementing their own monitoring and inspection hooks. The availability 
of heterogeneous data from multiple sources theoretically allows the detection of any kind of threats 
and attacks, including the typical scope of host-based, network-based, and hybrid IDSes, and antiviruses. 
From a practical perspective, however, the real range of algorithms will be limited by the possibility to 
find an acceptable trade-off between the complexity to implement local inspection and the 
communication overhead. This aspect will be explicitly considered in the demonstration and validation 
phase of the Project.  

The ASTRID architecture supports both existing detection tools as well as the design of innovative 
algorithms, leveraging the availability of tailored data and information from the whole graph. From an 
architectural perspective, each algorithm will only be required to implement the interfaces towards the 
Context Broker and the Security Controller. For existing tools, this could be achieved by developing plug-
ins or adapters. The interface to the Context Broker will be used to retrieve relevant information, 
including both real-time and historical data. This interface will allow selective queries to return 
aggregate of data, with respect to virtual functions and time periods. The interface to the Security 
Controller is used to notify security events like threats and attacks, that may trigger some forms of 
reaction. The description of the event may include an estimation of the accuracy of the detection, so to 
trigger the collection of more detailed information; alternatively, this information could be retrieved by 
evaluating specific conditions on the current security context. 

According to the proposal, at least two algorithms will be proposed to show the effectiveness and to 
evaluate the ASTRID framework. One algorithm will analyse the run-time traces of system calls for 
detection of unexpected execution flows (Control-flow Property-based Attestation), while one algorithm 
will look for anomalies in the network traffic flows. 

Control-flow property-based attestation (CFPA) proposes another view towards verifying the 
integrity of only those critical software functionalities. The contributions of such a CFPA-based 
architecture are twofold: first of all, ASTRID will use advanced tracing mechanisms for extracting the 
control-flow graph of a service (i.e., extended Berkeley Packet Filters (eBPFs)) that provides high 
performance with minimal overhead to the execution times of the system. Second, ASTRID will redefine 
the attestation process by checking only the security-wise critical functions (instead of the whole 

                                                             
 
12 This last option does not fall under the Project objectives, so it is not explicitly further discussed in the ASTRID 
architecture. Anyway, its implementation does not significantly affect the architecture, since it only requires the presence of 
additional tools for software verification. 
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application), resulting in a novel, scalable by design, lightweight, control flow attestation scheme (more 
detailed description of the proposed scheme will be provided in the context of WP3). 

The insight behind this approach is that we do not need the attestation of the entire system but only 

the execution properties of the security sensitive functionalities that are running on the system. The 

identification of which functionalities should be monitored is implementation dependent and depends 

on the entire service graph. The properties to be attested will be identified during the pre-deployment 

phase and will be included in the Control-flow Properties and Policies that will accompany the entire 

service graph. The aim of this procedure is to check both behavioural properties and low-level concrete 

properties about the entity’s configuration and execution, such as the current firmware version it is 

running, the version of its configuration file or presence of certain hardware properties, integrity of 

measurements, execution paths to specific memory regions, ports and network interfaces, etc. 

Furthermore, some of these properties might need to be attested individually while others might require 

to be approached as a system of systems that need to be attested by the involved devices as a group. 

Overall, CFPA will enable ASTRID to provide an efficient mechanism to verify software- and system-

integrity (during run-time) in order to detect any attempt to modify the execution of the loaded 

application; even in the case of attacks that were not anticipated (or have not been seen) before. 

6.4.6 Reaction and Prevention Policies 

Policies define the behaviour of the system. Conceptually, reaction and prevention policies do not 
implement inspection, detection or enforcement tasks, so they do not correspond to any existing 
security function (IDS/IPS, antivirus, VPN). Instead, they represent an additional upper layer for control 
of security services. Policies are therefore used to automate the response to expected events, avoiding 
whenever possible repetitive, manual, and error-prone operations done by humans. Based on the 
Project scope and objectives, the usage of ECA patterns for expressing the logic behind a policy looks an 
effective choice to achieve tangible results in the short period and to cover a broad range of interesting 
cases. The definition of an ECA policy requires at least 3 elements: 

 an Event that defines when the policy is evaluated; the event may be triggered by the data 
plane (i.e., detection algorithms), the management plane (i.e., manual indications from the 
dashboard, notifications from the service orchestrator), or the control plane (i.e., a timer); 

 a Condition that selects one among the possible execution paths; the condition typically 
considers context information as data source, date/time, user, past events, etc.; 

 a list of Actions that respond, mitigate, or prevent attacks. Actions might not be limited to 
simple commands, but can implement complex logics, also including some form of processing 
on the run-time context (e.g., to derive firewall configuration for the running instance). They 
can be described by imperative languages, in the forms of scripts or programs. 

The range of possible operations performed by policies include enforcement actions, but also re-
configuration and re-programming of the monitoring/inspection components in the execution 
environment. Enforcement and mitigation actions are mostly expected when the attack and/or threat 
and their sources are clearly identified and can be fought. Instead, re-configuration is necessary when 
there are only generic indications, and more detailed analysis could be useful to better focus the 
response. A typical example is a volumetric DoS attack. To keep the processing and communication load 
minimal, the monitoring process may only compute rough network usage statistics every few minutes. 
This is enough to detect anomalies in the volume of traffic but does not give precise indication about the 
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source and identification of malicious flows to stop. Re-configuring the local probes to compute per-flow 
statistics or more sophisticated analysis helps implement traffic scrubbing13. 

A special case of prevention is the initialization of the programmable components, that should be 
triggered once the service orchestrator has deployed the graph and prior to activation and connection 
to the public Internet. Initialization creates the initial configuration of the execution environment, 
including monitoring and enforcement tasks, by applying the security policies to the current run-time 
instantiation of the service template. For example, a typical initialization task is the generation of 
firewall rules based on connectivity requirements that can be inferred by the graph description and 
explicit rules from the service designer. This configuration shall be applied after the graph is deployed 
but before it is started, so it is important to receive the corresponding notifications from the service 
orchestrator. 

The adoption of advanced reasoning models, even based on machine learning and other forms of 
artificial intelligence, is clearly a very promising yet challenging target to automate the system 
behaviour. This would open the opportunity for dynamically adapting the response to new threat 
vectors. In this respect, the historical analysis and correlation of the events and conditions with the 
effects of the corresponding actions from existing policies or humans would provide useful hints to 
assess the effectiveness of the latter, so to identify and improve the best control strategies. 

6.4.7 Legal repository 

The legal repository keeps records of activities from end users, as required by the normative 
framework. This may include the logs of calls for a VoIP or videoconferencing service, the list of 
uploads/downloads for a file sharing service, and so on. The legal repository is depicted as a separate 
component to underline the fact that some constraints may apply to its implementation. For instance, 
the legislation may force a specific technology, physical location and restricted access, etc.  

According to preliminary outcomes from Task 2.5, the legal responsibility for the activities carried out 
within a given service is assigned to the Service Provider. He is in charge of collecting records that can 
unambiguously identify the source and time of relevant events. For example, for a VoIP application the 
Service Provider may record the time, duration, caller, and callee of each call; upload times, uploader, 
and access times may be kept for a file sharing service. One important aspect is that not all information 
can be collected by the ASTRID framework. The analysis of binary files to detect viruses and other 
malware for a file sharing service can likely be performed through some ASTRID agent; however, 
registration of other events and properties more related to the internal business logic (e.g., user identity 
and start/end time of a call) are expected to come from the same virtual functions. In this respect, it is 
important to harmonize all sources in a common framework. The topic will be investigated in detail in 
T2.5, and the revised architecture will reflect the main outcomes from that task. 

6.5 Security Dashboard 

The Security Dashboard is the main management tool of the ASTRID framework. It is used to interact 
with both the pre-deployment and run-time subsystems. For example, it can be used to edit the service 
templates for enrichment, to select specific software analysis, to visualize anomalies and security events 
and to pinpoint them in the graph topology, to set run time security policies, and to perform manual 
reaction. With respect to the last two options, we point out that security policies are the best way to 
respond to well-known threats, for which there are already established practice and consolidated 
methodologies for mitigation or protection. However, the identification of new threats and the 

                                                             
 
13 Scrubbing is a technical term used to indicate a cleansing operation that analyses network packets and removes malicious 
traffic (ddos, known vulnerabilities and exploits). It is usually implemented in dedicated devices or infrastructures, able to 
sustain high volumetric floods at the network and application layers, low and slow attacks, RFC Compliance checks, known 
vulnerabilities and zero day anomalies. 
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elaboration of novel countermeasures require direct step-by-step control over the on-going system 
behaviour. The dashboard interacts with the orchestration system to give security provider full control 
over the graph in case of need. 

The Security Dashboard is not a mere GUI; indeed, it implements a common and homogeneous 
interface to all manageable system components. As a matter of fact, we can better define the Security 
Dashboard as an API, which may be invoked by multiple roles; control access will limit the 
functionalities available to each user. This is necessary to support multiple business models and to 
provide awareness to different stakeholders. For example, some API may be devoted to set high-level 
security policies by the Service Provider. He may ask for “firewalling” services, intrusion detection, 
malware protection, and so on. Another example is the notification of attacks or anomalies to the Service 
Provider or end user, so they can be aware of a potential threat to their data or to service continuity. 
When the Security Provider and the Service Provider roles are implemented by different departments 
of the same organization, it may be convenient to use a common interface with different usage rights. 
This facilitates the extensions of existing orchestration tools. For example, the Security Dashboard may 
be implemented in an additional tab of the existing service orchestrator GUI, already including service 
design, selection of virtual functions, service deployment and management. 

We expect a GUI to be available at least for the Security Provider, but some partners may wish to 
integrate the Security Dashboard APIs in their own orchestration GUI, depending on their exploitation 
plans.  

6.6 Deployment and instantiation options 

The creation of a working ASTRID environment requires the deployment and instantiation of a 
number of complementary components: the pre-deployment subsystem, the run-time subsystem, and 
the Security Dashboard. Once more we remark that the two operational scopes might not be present in 
all business cases, so the deployment options for the above components can be analysed separately.  

The pre-deployment subsystem is expected to be installed manually. Based on the following 
considerations, we will not define specific interfaces or integration requirements for this subsystem, 
which will be developed by each interested partner according to its exploitation and business plans: 

 multiple implementation options are possible, with tight, loose, or no integration with other 
software development and orchestration tools; 

 it may also be (at least partially) integrated in the security dashboard, when the Security 
Provider covers both scopes; 

 specific drivers are required to edit different formats of service templates; 

 standard service descriptions are not available for all orchestration models (see Annex A); 

 it may consist of a mix of both automatic and manual operations for the different phases; for 
instance, the selection of VFs from the marketplace may require direct intervention from the 
Supply Chain and Service Acceptance specialists.  

The run-time subsystem is conceived to be the core asset of the ASTRID project. According to the 
design described in Section 6.4, it is a modular subsystem, where additional detection algorithms and 
reaction policies can be deployed dynamically. The implementation of a demonstration prototype is 
therefore mandatory for the project, to show the feasibility of the proposed solution and to carry out 
performance evaluation. From the perspective of a Security Provider, there are a few deployment and 
instantiation options for the ASTRID run-time subsystem, as described in the following.  

The run-time subsystem may be pushed as additional component in the service graph as part of 
the enrichment process, for automatic deployment and instantiation as a sort of virtual security function 



 

Page 45 of 76 

 
Deliverable D1.2 

 

over a virtualization infrastructure. In this case, the service orchestrator deploys both the original 
service and the ASTRID virtual function.  

Alternatively, the run-time subsystem may be deployed apart in a dedicated infrastructure, also 
including big data techniques for efficient implementation of advanced analysis algorithms. In this case, 
the same instance can be shared by multiple services, so to improve resource utilization and the base 
for analysis and correlation (e.g., trigger an event when similar anomalies occur in more than one 
service, apply prevention actions to all services upon detection and identification of an attack to one 
service). The service orchestrator still remains in charge of instantiating the security hooks embedded 
in the components of the service graph. It also needs a mechanism to automatically connect such local 
agents to the external framework, including the configuration of IP addresses, secure communication 
channels, authentication and control access, and so on. The most straightforward solution would be the 
insertion in the service graph of a sort of meta-component for the run-time subsystem, which only gives 
information about how to connect to an external function, i.e., parameters to set up a virtual private 
network (which may be an overlay over the Internet or a network slice),  network addresses and ports 
of the Context Broker, secret materials for encryption and authentication. The same solution could also 
be applied to connect the run-time environment with the external Security Dashboard. 

Independently of the deployment choice, dependability of the whole system relies upon integrity, 
availability, and trustworthiness of the ASTRID components. The selection of trusted infrastructures 
and the usage of remote attestation procedures based on TPM/TEE should therefore be enforced by 
deployment constraints, so to ensure the integrity of the boot process and the confidentiality of the 
overall system operation. Though attestation of the service topology and the run-time subsystem is not 
explicitly envisioned by the project workplan, it is a highly desirable feature for commercial exploitation 
by partners. 

The Security Dashboard, similar to the pre-deployment subsystem, must exist before and 
independently of the deployment of the service graph, and is expected to be tailored to different 
business models. As a matter of fact, it may be a standalone tool for Security Providers, a component of 
the service orchestrator for the Service Provider, or an intermediary solution with components in both 
domains (i.e., to collect high-level policies from the Service Provider and give control to the Security 
Provider). It will not be part of the enrichment process and will not be deployed automatically by the 
service orchestrator. Instead, tailored integration with existing or complementary tools is expected on 
a case-by-case base. 

6.7 Integrated ASTRID platform 
The design and operation of secure cloud and NFV services according to the ASTRID conceptual business 

chain and workflow, as shown in Figure 5 and Figure 6, respectively, is a mix of technical tools and 
management procedures that can be implemented in-house or externalized. The role of Security Provider 
may involve multiple sub-roles or functions in different business domains (i.e., service design, software 
development, service provider, security consulting), raising the opportunity for multiple business models. 

The main goal of the ASTRID project is the development of the enabling technologies envisioned by the 
overall architecture, which are within the run-time scope. The integrated ASTRID platform will therefore 
deliver a fully functional run-time environment, including the Security Dashboard. Release options will 
include source code and compilation instructions for sure, but might also include cloud images for 
evaluation. The pre-deployment system will not be released as standalone component, though alternative 
integration options will be investigated in the two Use Cases. The detailed architecture, logical 
components, and technologies of the integrated ASTRID platform will be reported in D1.3. 

Indeed, the realization of the overall ASTRID architecture largely depends on the integration with 
existing components and tools, primary for service orchestration but also for mitigation and risk 
assessment. For instance, the Security Dashboard can be a standalone component, but some partners 
may prefer to integrate it in their existing GUIs. In the same way, the graph enrichment may be 
integrated in the Security Dashboard or leverage existing tools for editing service templates. Again, user 
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policies may be collected by manual procedures (i.e., contracts, emails) or by existing management tools 
(e.g., an orchestration GUI, a customer application, the Business Support Systems / Operations Support 
Systems of network Service Providers). Each partner might therefore provide its own implementation 
of a pre-deployment system as part of its exploitation and dissemination strategy. 

The list of additional components and/or integrated platforms that will be released in addition to the 
foreseen official ASTRID framework will be reported in a following exploitation deliverable. 

6.8 Design and implementation plans 
The design and implementation of the discrete components envisioned by the ASTRID architecture 

will be part of the technical activities in WP2/3. Table 2 lists the specific Tasks that will be in charge of 
each architectural component. 

Table 2. Mapping of discrete architectural components to technical activities. 

Subsystem Component Task 

Pre-deployment 

Static sw analysis 3.1 

Service security enrichment 2.4 

ASTRID trusted repository 2.4 

Run-time 

ASTRID Security Controller 2.4 

Reaction algorithms 2.4 

Context Controller 2.1 

Context Broker 2.1, 2.2 

Local monitoring and inspection 2.1 

Local legal validation 2.5 

Legal repository 2.5 

Communication channels 2.4 

Identity management and access control 2.3 

Detection algorithms 3.2, 3.3 

Data repository 2.2 

GUI Security Dashboard 3.4 

7 Requirements 

This Section briefly maps the architectural components to the functional requirements identified in 
D1.1. Table 3 lists all the requirements for the ASTRID framework and indicates how they are fulfilled 
by the ASTRID architecture. The first three columns report the identifier (ID), priority (P), and name 
(Name) of the requirement. The fourth column (F) indicates whether the requirement has been 
completely fulfilled by the architecture (), it has been taken into account but requires further 
consideration at a further stage – for example, implementation or validation (), cannot be fulfilled by 
the current architecture (), or must be evaluated at a later stage (-). The last column (Details) explains 
how the architecture fulfil the requirement and what steps are still required during research and 
implementation. The list will be updated in upcoming deliverables based on the result of research and 
implementation activities. 
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Table 3. Fulfilment of function requirements identified for the ASTRID framework. 

ID P Name F Details 

R001-CS-
DSG 

T 
Data correlation 
over the whole 
graph 

 
The Context Broker collects data and events from all service 
components and feeds a centralized set of detection algorithms. 

R003-CS-
DSG 

T 
Local processing 
and 
programmability 

 

The Context Broker implements a control interface to local 
security agents. The local security agents developed in WP2 must 
be dynamically programmable/configurable. The eBPF will be 
used as main technology to run lightweight inspection and 
enforcement programs locally. 

R004-CS-
DSG 

T 
Secure 
communication 

 

Secure communication will be implemented in the control and 
data channels between the Context Broker and local agents, 
between the Security Dashboard and the Security Controller, and 
in the API of the service orchestrator. Investigation on attribute-
based encryption is foreseen in WP2. 

R007-CS-
DSG 

T Access control  
The methodologies, algorithms, and tools for access control will be 
defined in WP2. 

R008-CS-
DSG 

T 
Repository of 
trusted security 
programs 

 

An ASTRID security program repository is present in the run-time 
subsystem. The deployment of this component in trusted 
infrastructures and the usage of access control mechanisms will 
ensure the origin and integrity of such programs. 

R009-CS-
DSG 

T 
Collection of 
detection 
algorithms 

 
The abstraction provided by the Context Broker allows to run 
multiple detection algorithms in parallel. Some algorithms will be 
developed in WP3 for evaluation purposes. 

R010-SD-
DSG 

T 
Integration with 
orchestration tools 

 

The ASTRID Security Controller triggers life-cycle management 
operations on service graphs through APIs of software 
orchestrators. The ASTRID run-time subsystem has been designed 
as a standalone component, to avoid the need for complex 
modifications or re-design of existing software orchestration tools. 

R011-CS-
FUN 

T 

Hybrid software 
vulnerability 
analysis covering 
both pre- and after-
deployment of 
software services 

 
Static source-code analysis is performed before deployment, so to 
generate the metadata and information to verify the software 
execution at run time. Algorithms will be developed in WP2. 

R012-CS-
FUN 

T 

Support 
Vulnerability 
Analysis Protocol 
and Algorithms 
Agility 

 

The Security Controller allows to select one or more detection 
algorithms among those available. Reaction and prevention 
policies implement the control logic to choose which algorithm to 
run and when. They also re-configure the local agent to feed the 
algorithms with the needed context. 

R013-CS-
FUN 

T 
Access to 
heterogeneous 
security context 

 

The Context Broker hides different control and data interface to 
the rest of the system. This allows adding new sources without 
modifying detection algorithms and reaction policies. WP2 will 
implement local agents for monitoring log files, system calls, 
network packets. 
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ID P Name F Details 

R014-CS-
FUN 

T Packet inspection  

The ASTRID architecture allows pushing inspection programs 
from the internal repository. This enables a great level of flexibility 
in the design of deep-packet inspection tasks. The adoption of 
eBPF technology will improve performance with respect to other 
user-space or in-kernel mechanisms. 

R016-CS-
FUN 

T 

Behavioural 
analysis through 
attestation 
techniques 

 
Pre-deployment analysis will allow to identify execution paths and 
to compute integrity checks for verification at run-time. Some 
algorithms will be developed by WP3. 

R020-SD-
FUN 

T 
Recovery from 
compromised 
graphs 

 

The presence of reaction and prevention policies  and the interface 
to the service orchestrator allows the ASTRID Security Controller 
to trigger management actions on the service graph, including re-
deployment, replacement of compromised functions, etc. 

R022-SD-
IFA 

T REST API  
WP3 will develop a Security Dashboard that can be used both 
through the GUI and API. 

R026-CS-
PRF 

T 
Average time to 
detect compromised 
software 

- This requirement will be considered in WP4. 

R027-CS-
PRF 

T 
Average time to 
detect network 
anomalies 

- This requirement will be considered in WP4. 

R028-CS-
PRF 

T 
Average time to 
respond to attack 

- This requirement will be considered in WP4. 

R032-SD-
PRF 

T 
Average time to 
replace a single 
function 

- This requirement will be considered in WP4. 

R033-SD-
PRF 

T 
Average time to re-
deploy the service 
graph 

- This requirement will be considered in WP4. 

R034-SD-
PRF 

T 

Average time to 
switch between 
redundant 
deployments 

- This requirement will be considered in WP4. 

R035-SD-
PRF 

T 

Average time to 
change the 
forwarding rules in 
a service chain 

- This requirement will be considered in WP4. 

R037-SD-
RLB 

T 
The attack surface 
does not increase 

 

The current architecture has selected the eBPF technology for 
implementing programmable local agents. eBPF programs run in 
an isolated virtual machine within the kernel and are safe. Other 
local agents for log collection have very small footprint and do not 
introduce vulnerabilities (WP2).  

R040-
LAW-FUN 

T 
Certification and 
legal validity 

 
The architecture envisions a separate repository for data with 
legal validity. The mechanisms to certify the origin, time, and 
integrity of such data will be investigated in WP2. 
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R002-CS-
DSG 

M 
Data correlation 
over multiple 
service graphs 

 

The run-time subsystem is not tightly bound to the service graph. 
Alternative deployment options are possible (see Section 6.6), 
where multiple graphs are connected to the same Context Broker. 
To completely fulfil this requirement, the implementation must be 
able to distinguish different services and to manage detection over 
a single or multiple graphs. 

R005-CS-
DSG 

M Historical data  
The Context Broker includes database to keep data for historical 
analysis. The persistence of data in the Context Broker can be 
changed according to the specific needs. 

R015-CS-
FUN 

M 
Distributed 
firewalling 

 

The internal structure of the run-time subsystem allows he 
definition of multiple reaction and prevention policies. A policy 
will be developed to automate the application of filtering rules in 
each virtual machine/container. 

R017-SD-
FUN 

M 
Automatic firewall 
configuration 

 

The service topology will be loaded in the Security Controller. A 
specific reaction and prevention policy will be developed in WP2 
to automatically translate communication requirements at the 
graph level into filtering rules for all the enforcement agents. 

R018-SD-
FUN 

M 
Dynamic 
modification of the 
service topology 

 

The interface between the Security Controller and software 
orchestrator will allow to trigger modifications in the service 
graph, according to pre-defined life-cycle management actions 
(e.g., replace virtual function, add security function, isolate virtual 
function, create honeypot, etc.). 

R024-CS-
USB 

M 
Graphical User 
Interface 

 The ASTRID Security Dashboard will implement a GUI (WP3). 

R021-SD-
FUN 

M 
Automatic 
enhancement of the 
service graph 

 

The Security Dashboard allows users (service provider) to select 
desired security requirements. These security requirements will 
be mapped to concrete instantiations and configurations of the 
run-time subsystem (e.g., the detection algorithm to be run, 
reaction/protection policies, etc.). 

R036-SD-
DSG 

M 

Lightweight 
operation and small 
impact on the 
service graph 

 
Local agent for log collection and eBPF have already proven to be 
secure, lightweight, and high-performance technologies. 

R039-SW-
DSG 

M 
Integration with 
existing logging 
facilities 

 
WP2 will develop a data collection framework (local agents + 
Context Broker) largely based on existing tools.  

R006-CS-
DSG 

L 
Privacy and 
sensitive data 

 Extension left for commercial implementations. 

R019-CS-
FUN 

L 
Autonomous 
operation 

 

The ECA model for reaction and prevention policy allows the 
ASTRID Security Controller to trigger the execution of some logic. 
That logic will check the current context and will issue commands, 
including re-configuration of the local agents, modifications to the 
service graph, notification to users. 

R023-CS-
SUP 

L 
Cyber-Threat 
Intelligence (CTI) 

 
This is possible by creating reports that relates the context with 
the detected threats. Left for commercial implementations. 

R025-CS-
USB 

L 
Notification of 
security events 

 Left for commercial implementation. 
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R029-CS-
PRF 

L Detection rate - This requirement will be considered in WP4. 

R030-CS-
PRF 

L 
Precision of 
detection 

- This requirement will be considered in WP4. 

R031-CS-
PRF 

L 
Performance of 
attestation services 

- This requirement will be considered in WP4. 

R038-SW-
DSG 

L 
Digital right 
management 

 Not covered by current architecture. 

R041-
LAW-FUN 

L 

Automatic 
encryption of 
interception 
channels 

- This requirement will be considered in WP4. 

8 Relationship with similar architectures 

The current market of cyber-security products is largely fragmented. In addition to legacy firewalls, 
intrusion prevention/detection systems and antivirus for personal and enterprise usage, many vendors 
are already tackling new business opportunities by delivering solutions for enterprise’s networks and 
endpoints, pure and hybrid cloud, industrial devices and networks, security analytics, and integrated 
solutions. The last class of products aims at getting real-time visibility into all activity on systems, 
networks, databases, and applications; such solutions apply artificial intelligence and machine learning 
to wide data sets, facilitating response to attacks by quick one-touch remediation actions. Information 
from vendors are extremely blurry about technical features and architectures, giving the impression 
that a tailored solution is developed for each customer by composing discrete standalone appliances 
and components. This make a direct comparison with the ASTRID architecture impossible. 

8.1 The Interface to Network Security Functions framework 

Looking at the research domain, the I2NSF framework is the only relevant effort that can be compared 
with ASTRID. As preliminary consideration, we note that the ASTRID architecture is largely compliant 
with the I2NSF framework, and it may represent a possible implementation for virtualized 
environments. Here, we briefly compare the two frameworks under several aspects; the interested 
reader finds a detailed description of I2NSF in Annex B. 

Scope. As the name implies, the I2NSF framework specifically looks at network security functions, i.e., 
security services that manipulates network packets. The framework targets multiple domains (access 
networks, enterprise networks, cloud services), and applicability to both physical appliances and virtual 
instances. It covers the control plane (i.e., selection and configuration of NSFs), but the definition of 
mechanisms for translating high-level policies into policy rules is currently out of scope for the working 
group. The data plane and management plane do not fall in the scope of I2NSF; the data plane is totally 
left to vendors of security functions, and no specific assumptions or requirements are made on 
deployment, device configuration, life-cycle management, and resource provisioning. ASTRID has a 
broader scope, also including software analysis in addition to network threats, but it explicitly focuses 
on virtual NSFs, which can be dynamically created and managed in the context of each single virtual 
service. However, this does not preclude in principle the usage of hardware acceleration and physical 
network functions (PNF), which are part of the management capability of orchestration tools, yet this 
option does not fall under the Project’s objectives. ASTRID explicitly covers the data, control, and 
management planes, targeting better efficiency and programmability, so to effectively tackle the 



 

Page 51 of 76 

 
Deliverable D1.2 

 

continuous evolving threats landscape. Though, this does not preclude the possibility to use standalone 
security appliances. As final consideration, we note that both frameworks target monitoring and 
enforcing policies, even though I2NSF is more leaned to enforcing and ASTRID is currently more focused 
on detection and situational awareness. 

Business model. Both ASTRID and I2NSF considers a similar business model, where Security 
Providers take care of security services on behalf of their customers. In both cases, customers are 
allowed to describe their security requirements in terms of high-level policies, whereas the translation 
to configuration rules is managed by the framework (with automatic or manual procedures). ASTRID 
also envisions tight coordination between the Security Provider and the Service Provider, which is not 
present in I2NSF because of its more general scope. For the same reason, all tasks in the ASTRID pre-
deployment subsystem are not present in I2NSF. Overall, the ASTRID business model could be viewed 
as an enhanced version of that of I2NSF for virtual services. 

Architecture. The I2NSF reference model and the ASTRID architecture are compared in Figure 11. In 
a bird’s eye view, the ASTRID architecture is more complete, since it is rapidly evolving not being slowed 
down by a standardization process. They both rely on coordination from a Security Controller, which 
applies security policies. In both cases, internal policies are defined as flow policies (for instance, in ECA 
form) that are translated by the Security Controller in specific policy rules for each NSF. Such policies 
are instantiated through the Security Dashboard in ASTRID; the translation may either be performed 
automatically or managed by the Security Provider. In the I2NSF model, the translation is directly 
managed by the Security Controller; however, it is currently suggested to express user policies in a ECA 
form that can be mapped to policy rules in a straightforward way (Sec. 7.1 of [15]). The I2NSF Consumer-
Facing Interface can be mapped to the API/interface of the ASTRID Security Dashboard. On the right 
side of the picture, the I2NSF framework control physical and virtual instance of security appliances 
(NSF), but it dictates that they implement the NSF-Facing interface. ASTRID can control vNSF as well, 
but for the sake of efficiency and programmability it mainly focuses on the separation between 
inspection tasks and the detection logic. The combination of detection algorithms and local inspection 
agents are totally equivalent to a NSF, but the substantial difference is the far greater flexibility in 
composing bespoke security functions to the specific service implementations. ASTRID does not 
mandate a standard interface for all security functions (vNSF, detection algorithms, local inspection 
agents), which is not a feasible approach in the short/medium period, but leverages a Context Broker to 
harmonize the different dialects spoken by the set of heterogeneous controlled elements. The I2NSF 
NSF-Facing interface may be implemented between the ASTRID Security Controller and the Context 
Broker, progressively divesting the latter of its functions as more elements adopt the standard interface. 
In both frameworks the Security Controller needs knowledge about the security functions available. In 
I2NSF, there is a dedicated Registration interface, and a unspecified “Management System” that depends 
on the specific environment. It may be part of existing management tools in large infrastructures (as the 
networks of telecom operators or the data centres of cloud operators). In ASTRID, given the more 
restricted scope, the management component is the service orchestrator, which deploys and manages 
vNSF and local agents in the service graph. It knows the capabilities and interfaces of all elements in the 
data plane, that are made available to the Security Controller through the orchestration APIs. As part of 
the management framework, the I2NSF is already addressing remote attestation of both the Security 
Controller and NSFs. This aspect is not currently listed among the ASTRID objectives, but it represents 
a meaningful extension for concrete exploitation beyond the Project lifespan. Finally, though not 
explicitly shown in Figure 11, an AAA framework is necessary in both cases to establish secure 
relationships and channels between the involved elements. ASTRID will explicitly address this aspect, 
whereas concrete proposals are still missing in the I2NSF framework. 
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Figure 11. Comparison between the conceptual architectures for I2NSF and ASTRID. 

The ASTRID architecture can be considered a first implementation of the I2NSF framework, targeting 
virtualized systems. The I2NSF does not strictly mandate a specific architecture, but it is mostly 
concerned with interoperability interfaces. In this respect, the ASTRID architecture will continuously 
look at the I2NSF while defining the corresponding interfaces; ASTRID will also consider the possibility 
to contribute to the standard with its own architecture and the enhanced data plane. 



 

Page 53 of 76 

 
Deliverable D1.2 

 

References 

[1] B. Karakostas, “Towards Autonomic Cloud Configuration and Deployment Environments,” Intl. 
Conf. on Cloud and Autonomic Computing (ICCAC), London, UK, pp.93–96, Sept. 2014. 
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Annex A Orchestration models 

The term “orchestration” is by now a buzzword in the IT word, though it has been used with slightly 
different meanings in the last years. Intuitively, it recalls the idea of coordinating, arranging, or 
organizing something together. Indeed, recent definitions in this field agree that orchestration describes 
automated arrangement, coordination, and management of complex computing systems, middleware, 
and services.  

Orchestration is often discussed in the context of service oriented architectures, virtualization, 
resource provisioning, hyper-convergence and software-defined data centres. Its purpose is to 
automate as much as possible multiple complementary workflows, with the main goal of aligning 
business requirements with applications, data, and infrastructures. While “automation” makes the 
execution of a single task possible without direct human operations (e.g., launching a web server, 
stopping a service), “orchestration” broadens the scope to multiple tasks, which collectively execute a 
larger workflow or process and could involve multiple systems. Differently from mere automation, 
where the steps are rather deterministic and control is mostly limited to the selection of alternative 
execution paths based on the dynamic context, orchestration is mostly concerned with optimization of 
the processes and workflows. This implies an inherent intelligence that considers intents, goals, 
aspirations rather than technical conditional statements. 

In the extended cloud domain (hence including network virtualization), the primary responsibility for 
orchestration is the selection of resources and deployment of the overall workflow according to multiple 
requirements and constraints: cost, performance, reliability, efficiency, locality, redundancy, security, 
scalability, resiliency, and so on. Therefore, the problem is not limited to the definition of the sequence 
of commands to be called, but includes the elaboration of life-cycle management strategies that are able 
to autonomously react to changes in the workload, failures, cyber-attacks, anomalies, and unexpected 
conditions. 

From a more technical perspective, cloud service orchestration entails the following tasks: 

 dynamic provisioning of virtual resources for computing, networking, and storage; 

 deployment, configuration, and update of the software; 

 connection and automation of workflows to deliver the defined service. 

Orchestration is mainly responsible for: 

 provisioning the correct amount of resources, by taking into account performance 
requirements for the overall service (e.g., latency in processing requests) and computation 
requirements of its components (e.g., CPU/RAM/network bandwidth requested by the 
software to process a request); 

 supervising the execution of the service, by monitoring resource utilization and service 
performance; 

 performing life-cycle management events (e.g., start/stop the service, scale the service, 
recover from failure), upon specific conditions. 

Many tools are indicated as orchestration solutions, but not all of them can be properly considered as 
such. For example, configuration management tools as Puppet, Chef, Ansible and SaltStack are designed 
to reduce the complexity of configuring distributed infrastructure resources, but do not cover the full 
scope of orchestration. Cloud management software, as OpenStack and Kubernetes, allows dynamic 
provisioning of resources, boot of software images, and configuration of IP addresses and other 
properties; however, it cannot perform life-cycle management actions. In this project, we strictly follow 
the general definition for orchestration, hence configuration management tools and cloud management 
software are considered part of the a broader orchestration framework. 
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As previously discussed, orchestration is a far more complex process than mere automation. While 
automation is largely based on the execution of scripts in common languages, orchestration needs a 
more complex framework, which describes the overall service in terms of abstract components (i.e., 
virtual functions) and their logical relationships (i.e., configuration dependencies). This abstraction is 
used both to compute the virtual resources that are needed to deploy the service and to configure its 
discrete components. There are currently multiple alternative solutions to describe virtual services, 
which largely reflects the specific needs of different domains. We arbitrarily indicate these solutions as 
“orchestration models,” though this term is not used in the technical literature, due to the lack of more 
specific terminology. Our analysis is mostly devoted to provide the interested reader with better 
knowledge of what orchestration implies and how this could affect the ASTRID framework, without the 
ambition to give a full review of all available orchestration models. In this respect, we only focus on the 
most representative models coming from standardization bodies, one for cloud applications and two for 
NFV. 

A.1 OASIS TOSCA 

The main goal of the Topology and Orchestration Specification for Cloud Applications (TOSCA) [5] is 
to enhance the portability and management of cloud applications across alternative environments. 
TOSCA is basically a language that uses a metamodel to describe an IT service, which defines both its 
structure as well as how to manage it (see Figure 12). The TOSCA metamodel uses the concept of Service 
Templates to describe cloud workloads as a topology, which is a graph of Node Templates modelling the 
components a workload is made up of, and as Relationship Templates modelling the relations between 
those components. TOSCA further provides a type system of Node Types to describe the possible 
building blocks for constructing a Service Template, as well as Relationship Type to describe possible 
kinds of relations. Both Node and Relationship Types may define lifecycle operations to implement the 
behaviour an orchestration engine can invoke when instantiating a Service Template. For example, a 
Node Type for some software product might provide a ‘create’ operation to handle the creation of an 
instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle a start or stop event 
triggered by an orchestration engine. Those lifecycle operations are backed by implementation artefacts 
such as scripts or Chef recipes that implement the actual behaviour. 

TOSCA describes Service Templates by the following elements: 

1. service components and their logical topology, by mean of an XML schema definition; 

2. management procedures to create or modify services, by means of artefacts. 

As such, TOSCA does not mandate any specific architecture for service orchestration, leaving freedom 
to alternative implementations. An orchestration engine processing a TOSCA Service Template uses the 
mentioned lifecycle operations to instantiate single components at runtime, and it uses the relationship 
between components to derive the order of component instantiation. For example, during the 
instantiation of a two-tier application that includes a web application that depends on a database, an 
orchestration engine would first invoke the ‘create’ operation on the database component to install and 
configure the database, and it would then invoke the ‘create’ operation of the web application to install 
and configure the application (which includes configuration of the database connection). 

Service Templates are deployed in TOSCA containers, which are runtime environments that enable 
the automated provisioning of TOSCA applications. An artefact represents something that can be 
executed. The representation of the executable can be direct or indirect. A direct representation is 
something that is the executable itself, like a script, an EJB, a BPMN file, and so on. An indirect executable 
is a reference to an executable, like a URL of a resource that can be downloaded, an endpoint reference 
to a port (i.e. an implementation of a WSDL port type), and so on. Typically, descriptive metadata will 
also be provided along with the artefact. This metadata might be needed to properly process the artefact, 
for example by describing the appropriate execution environment. TOSCA artefacts include: 
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 implementation artefacts that implement the interfaces (i.e., management operations) defined 
by Node Types. For example, one management operation could be the instantiation of a Node 
Type. They must therefore be present in the management environment before any operation 
can be started. Implementation Artefacts can be implemented using arbitrary technologies, 
such as shell scripts, Java/JEE or any further programming language. 

 deployment artefacts that implement the business functionality of a Node Template. These are 
executables materializing instances of a node (e.g., disk images, installables, zip archives, WAR 
files). They are deployed in the managed environment during the instantiation of Node Types. 

A.1.1 TOSCA model 

 

Figure 12. Structure of Service Templates in TOSCA and constituent components. 

Figure 12 shows the logical structure of a Service Template, which is made of a Topology Template, 
Node Types, Relationship Types, and Plans. 

A Topology Template (also referred to as the topology model14 of a service) defines the structure of 
a service. A topology template can be used to instantiate and orchestrate the model as a reusable pattern 
and includes all details necessary to accomplish it. Topology Templates are defined as (not necessarily 
connected) directed graphs consisting of nodes and relationships. A node can be an infrastructure 
component, like a subnet, a network, a server (it can even represent a cluster of servers), or it can be a 
software component, like a service or a runtime environment. Meanwhile, a relationship describes how 
nodes are connected to one another. 

                                                             
 
14 The term Topology Model is often used synonymously with the term Topology Template with the use of “model” being 
prevalent when considering a Service Template’s topology definition as an abstract representation of an application or 
service to facilitate understanding of its functional components and by eliminating unnecessary details. 
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A node in this graph is represented by a Node Template. A Node Template specifies the occurrence 
of a software component node (i.e., an instance) as part of a Topology Template. Each Node Template 
refers to a Node Type that defines a component in terms of its properties, interfaces, capabilities, and 
requirements. Node Types are defined separately for reuse purposes; Node Templates can provide 
customized properties, constraints or operations which override the defaults provided by their Node 
Types. 

Node requirements indicate what is needed to use the component in a Service Template. This includes 
dependencies on features provided by other components, or constraints on the execution environment, 
such as the allocation of certain resources or the enablement of a specific mode of operation. Similarly, 
capabilities express features provided by the component. Requirements and capabilities are modelled 
using specific data types (Requirement Type and Capability Type), so that the same definitions can be 
used for multiple components. For instance, an application may include a “Database Connection 
Requirement” to describe the need for a database connection; a Java application node may expose a “Java 
Servlet Runtime Requirement”, whereas the Apache Tomcat node provides a matching “Java Servlet 
Runtime Capability.” While Node Types only provide descriptive metadata for requirements and 
capabilities, Node Templates will provide concrete values for these properties. In particular, 
requirements can be fulfilled in two ways: 1) requirements of a Node Template can be matched by 
capabilities of another Node Template in the same Service Template by connecting the respective 
requirement-capability pairs via Relationship Templates (e.g., the Java application as source node and 
Apache Tomcat server as target node in the previous example); 2) requirements of a Node Template can 
be matched by the hosting environment, for example by allocating needed resources for a Node 
Template during instantiation (e.g., IP addresses taken from a valid subnet). 

A Relationship Template indicates some sort of dependency between nodes. Similar to the nodes, 
each Relationship Template refers to a Relationship Type, which defines its semantics, properties, and 
interfaces. The Relationship Template explicitly identifies the direction of the relationship. There may 
be different kinds of relationships. For example, a relationship may be established between a web 
application and a web server, meaning something like “hosted by,” or between an Apache web server 
and a MySQL server, meaning that the database requirement of the former is satisfied by the capability 
of the latter. 

The last component of a Service Template are Plans. Management Plans are automatically executable 
workflow models that imperatively specify the management operations to be executed for a certain 
management functionality. They describe the management aspects of service instances, especially their 
creation and termination. These plans are defined as process models, i.e. a workflow of one or more 
steps. Process models can be either directly included in the plan or referred to. A process model can 
contain tasks that refer to operations exposed by the interfaces of Node Templates, Relationship 
Templates, or any other interface (e.g. the invocation of an external service for licensing); in doing so, a 
Plan can directly manipulate nodes of the topology of a service or interact with external systems. All 
Plans are expected to be adapted to the concrete execution environment by Service Providers. Instead 
of providing another language for defining process models, the specification relies on existing languages 
like BPMN or BPEL, which facilitates portability and interoperability. 

Both the nodes and relationships types include properties and interfaces. Interfaces are operations 
allowed to control the specific component. Interfaces are used by the plan models for lifecycle 
operations (install, start, stop, etc.), but further management interfaces may be defined for component-
specific operations (e.g., backup_database and restore_database for a MySQL server). All these 
operations are typically implemented by configuration management tools, as Chef recipes or Unix shell 
scripts. Operations in the context of a relationship are distinguished in source operations and target 
operations, based on the direction of the relationship: source operations are executed on the source 
node, target operations on the target node. Properties can be defined as arbitrary data structures to 
make the components configurable. They are similar to “variables” that must be instantiated at run-time 
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(e.g., IP addresses, location of log files). All properties are exposed to interfaces, so that they can be 
considered during execution. 

Service Templates can also be nested, to facilitate the design of complex applications and to reuse 
common components. For example, the environment to run web applications is usually composed of a 
web server, operating system, and virtual machine. Hence, a Service Template for an application server 
may be designed as shown in the left side of Figure 13 by a vendor specialized in deploying and 
managing application servers. This Template can be viewed as a Node Template, once it exposes the 
same boundaries (requirements, capabilities, properties, interfaces). The Service Template for the web 
application can therefore be designed with two Node Templates only, one for the web application and 
the other one for the application server, as depicted in the right side of Figure 13. During deployment, 
the Node Template for the application server is substituted with the corresponding Service Template, 
and this operation is possible because the two elements use the same boundary definition. 

 

Figure 13. Nested Service Template. 

TOSCA specifies Cloud Service Archives (CSAR) as packaging format for cloud applications. A CSAR is 
a portable and self-contained archive that contains all TOSCA model files as well as further software 
required to enable the automated provisioning and management of the modelled applications:  the 
definitions of types, templates, artefacts, plans, and any additional referenced file. It enables a TOSCA 
runtime (e.g., OpenTOSCA15) to traverse the topology template to create application instances. 

A.1.2 Deployment and orchestration 

Deploying a TOSCA application implies the creation of an instance of its Service Template. The 
instance is indeed derived by the Topology Template, which can be instantiated either by imperative or 
declarative processing. Imperative processing makes use of a special plan, often referred to as “build 
plan,” that orchestrates the management operations provided by nodes and relationships, usually by 
running the implementation artefacts attached to their interfaces. The build plan will provide actual 
values for the various properties of Node Templates and Relationship Templates. These values can come 
from input passed in by users as triggered by human interactions defined within the build plan, by 
automated operations defined within the build plan (such as a directory lookup), or the templates can 

                                                             
 
15 https://www.opentosca.org/.  

https://www.opentosca.org/
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specify default values for some properties. A declarative TOSCA runtime infers the corresponding logic 
automatically by interpreting the topology template and deriving the actions to be executed on its own. 

Figure 14 shows an indicative example for a OnlineBookstore web application. It is composed by 
multiple node components, with indication of relationships: the web application runs in the WebSever, 
which runs on Linux, which is hosted by a virtual machine. The TOSCA runtime (i.e., orchestrator) will 
first instantiate the VirtualServer template, by invoking the corresponding EC2 API for provisioning, 
according to the implementation artefacts; this operation may also associate a static IP address. Next 
the OperatingSystem is booted through the deployment artefacts, and the installation scripts are 
executed to install the WebServer. Management operations of the WebServer will allow to install the 
java application that implements the OnlineBookstore application. Finally, any specific implementation 
artefact for the application may be called to finalize the instantiation. It is worth noting that, according 
to the concrete definitions of Node Types and Templates, the runtime system will also take care of 
configuration of all components (e.g., by setting the IP listening addresses for the WebServer). 

 

Figure 14. Example of TOSCA topology template for a web application. 

The behaviour of a TOSCA application can be defined by policies. In TOSCA, a Policy Type defines a 
type of requirement that affects or governs an application or service’s topology at some stage of its 
lifecycle but is not explicitly part of the topology itself (i.e., it does not prevent the application or service 
from being deployed or run if it did not exist). TOSCA policies are a type of requirement that govern use 
or access to resources which can be expressed independently from specific applications (or their 
resources) and whose fulfilment is not discretely expressed in the application’s topology (i.e., via TOSCA 
Capabilities). A Policy can express such diverse things like monitoring behaviour, payment conditions, 
scalability, or continuous availability, for example. The definition of policies includes three main 
elements: 

 its properties, which define the type of configuration parameters that the policy takes; 

 its targets, which define the node types to which the policy type applies; 

 its triggers, which specify the conditions in which policies of this type are fired. 

A Trigger defines an event, condition, and action (ECA) that is used to initiate execution of a policy 
associated with it. The definition of the Trigger allows specification of the type of events to trigger on, 
the filters on those events, conditions and constraints for trigger firing, the action to perform on 
triggering, and various other parameters. 
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Policies typically address the following concerns: access control (rules to access the service based on 
organization role, time of day, geographic location, etc), placement (assures affinity or anti-affinity of 
deployed applications and their resources for performance, availability, reliability, and other matters), 
quality of service (assures performance and continuity of software components along with 
considerations for scaling and failover). 

A.2 ETSI Network Function Virtualization/IETF Service Function 
Chaining 

Traditional network service deployments are based on complex and rigid configurations, highly 
dependent on the physical topology and outdated control protocols. The deep effort towards increased 
agility in service deployment and management has driven a progressive transition from hardware to 
software- defined paradigms, leading to the recent concepts of service function chaining and network 
functions virtualization [12]. The common denominator is the freedom to steer packet streams across a 
set of network functions without the need to change the physical topology or complex configurations. 
Indeed, these models can be indicated as data-driven orchestration and are quite different from the 
abstraction discussed in Section A.1. Among alternative models and standards that have been proposed 
[13], the SFC and NFV architectures are currently the main drivers towards future intelligent networks. 

A.2.1 ETSI NFV 

ETSI has produced a comprehensive framework for Network Function Virtualization, including the 
definition of the management architecture and the abstraction models for network services. The unique 
characteristic of the ETSI framework is the definition of a standard Management and Orchestration 
(MANO) architecture, which should ensure compatibility and interoperability of components from 
different vendors. This effort is not present in TOSCA and SFC, which focus on the definition of the 
abstraction of the service but do not dictate any specific architecture for implementing the orchestrator.  

NVF Management and Orchestration architecture (MANO) 

The MANO architecture [8] relates virtualization infrastructure with management components, as 
shown in Figure 15. Different colours are used to group elements at the infrastructure, VNF, and 
orchestration/management layer.  

The NFVI includes all hardware and software components which build up the environment where 
VNFs are deployed, managed, and executed. The NVFI is typically composed of multiple Point-of-
Presences (NFVI-PoPs), which represent discrete installations of virtualization technologies in different 
locations; they may include data centres, central offices, edge installations. Wide-area networks 
interconnect the different NFVI-PoPs and are also part of the NFVI. From the perspective of VNFs, the 
NFVI is seen as a single aggregation of computing, networking, and storage resources, which are 
abstracted by a virtualization layer (i.e., hypervisor or similar technology) in order to provision virtual 
resources for the execution environment. There is no specific indication about the virtualization layer, 
leaving the freedom to choose among hypervisors, containers, and hardware acceleration. From a 
network perspective, there is typically a distinction between NVFI-PoP networks, which are expected to 
be managed with the same or similar technologies as data centres, and transport networks, where SDN, 
slicing or more traditional wide-area networks approaches could be used. 

The VIM manages NFVI resources in a single domain, hence there will be multiple VIMs in an NFV 
architecture. A VIM basically plays the same role as CMS: it creates, maintains and tears down virtual 
machines, keeps inventory of VMs associated with physical resources, deals with performance and fault 
management, exposes northbound APIs to upper management systems. 
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Figure 15. ETSI MANO architecture. 

A VNF is a software function that can be orchestrated (i.e., automatically instantiated, started, stopped, 
terminated, scaled). From a functional perspective, there is no difference between a VNF and its physical 
counterparts.  Examples of possible VNFs are EPC, MME, SWG, PWG, RGW, firewalls, DHCP servers, etc. 
A VNF may be deployed in a single VM or may be decomposed in multiple components which are split 
in more VMs. 

The management of a VNF is split into two parts, heading to functional and virtual aspects. In both 
cases, management includes Fault, Configuration, Accounting, Performance and Security (FCAPS). The 
EM is responsible for FCAPS management of the business logic of the VNF. It is essentially the same as 
for physical instances of the VNF, because it does not cover any issue related to the virtualization 
framework. On the other hand, the VNFM manages all aspects related to virtualization: it creates, 
maintains, scales, and terminates VNF instances in the NVFI, and addresses FCAPS issues related to 
virtualization (e.g., faults in the NFVI, lack of resources). There may be multiple VNFMs managing 
separate VNFs or there may be one VNFM managing multiple VNFs. To be more concrete with an 
example, if there is any issue with the spinning up of a VNF, it will be reported by the VNFM but if the 
fault is related to a function (for example, some signalling issue in mobile core) it will be dispatched to 
the EM. VNFM exposes its interface to the EM in case an operator wishes to use single GUI for all kind of 
FCAPS ( virtual + functional). 

The NVFO orchestrates the different management elements (VIMs, VNFMs) present in the MANO 
framework, leading to both resource and service orchestration. A single service may require resources 
from multiple NFVIs, so the NVFO coordinates, authorizes, releases, and engages such resources through 
the different VIMs (Resource Orchestration). On the other hand, the NFVO coordinates the VNFMs of the 
VNFs that are needed to create an end-to-end network service (Service Orchestration), including the 
instantiation of the same VNFMs, if necessary. An example would be creating a service between the base 
station VNF’s of one vendor and core node VNF’s of another vendor. In both cases, the NFVO only 
interfaces to the management entities (VIM and VNFM) instead of the infrastructures or software (NFVI 
and VNFs, respectively). The NVFO is the “entry point” for the service description (i.e., VNF Forwarding 
Graph), which will be described in the next Subsection. 
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The NFVO operation relies on 4 main catalogues of information about the NFV system. The VNF 
Catalogue is the repository of all usable VNFs. Each VNF is described by its VNF Descriptor, which is a 
deployment templates that contains its deployment and operational behavioural requirements. It is 
primarily used by VNFM in the process of VNF instantiation and lifecycle, but it can also be used by the 
NFVO to manage and orchestrate Network Services and virtualized resources on  NFVI. The NS 
Catalogue contains all usable Network Services. A NS is described by a deployment template in terms of 
VNFs and description of their connectivity through virtual links. NFV Instances list holds all details about 
Network Services instances and related VNF Instances. Finally, the NFVI resources is a repository of 
resources used by instantiated NSs. 

OSS/BSS includes collection of systems/applications that a service provider uses to operate its 
business. In principle it would be possible to extend the functionalities of existing OSS/BSS to manage 
VNFs and NFVI directly, but that would result in a proprietary implementation of a vendor, because the 
interfaces with EM and VNFs are not yet defined by ETSI (dotted lines). The existing OSS/BBS, however, 
adds value to NFV MANO by offering additional business functions (billing, accounting) which might not 
be supported by implementations of MANO. 

Network service description 

The description of a Network Service in ETSI NFV is based on the definition of a Network Service 
Descriptor (NSD). An NSD contains all the elements that are required by the NFVO for management 
operations, including the functional and behavioural specifications. Therefore, an NSD includes the 
reference to involved VNFs, Physical Network Functions (PNFs), and Virtual Links (VLs), as well as the 
definition of VNF Forwarding Graphs (VNFFGs) and Network Forwarding Paths (NFPs). An NS can also 
include another NS, hence creating a nested structure. The definition of a NS is based on templates, 
which define alternative deployment flavours, which represent possible variants for different 
operational scenarios. Each flavour defines allowed profiles for VNFs, VLs, PNFs, as well as scaling and 
affinity rules. Thanks to the availability of different profiles, it is possible to choose among different VNF 
implementations, the number of their instances, and the constraints on the underlying infrastructures 
(which affect both performance and cost). Figure 16 shows the main logical components of a network 
service, together with their relationship with the MANO framework. 

 

Figure 16. ETSI VNFFG for service description. 

VNFs are in turn described by VNF Descriptors (VNFDs) [10]. The VNFD contains the software that 
implements the business logic for the VNF (delivered as bootable image) and all metadata and 
properties for its correct instantiation. Such metadata includes the format of the software image, its 
external connection points to be chained with other VNF to create end-to-end NSs, requirements and 
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constraints on the execution environment, dependencies needed to install, start and terminate the VNF, 
and life-cycle management scripts. The description permits the specification of multiple deployment 
flavours (number of instances, affinity rules, monitoring parameters, scaling profiles, etc.), so to match 
different operational conditions. A VNF can be a standalone component or be composed by sub-
components. Each subcomponent corresponds to a different VM or container, interconnected by virtual 
links. For each component, the description of the deployment and operational behaviour is provided. 

PNFs may be identified and included in the NS. In this case, the definition mainly focuses on 
connectivity requirements, as a PNF by definitions covers its own resource requirements and cannot be 
deployed in locations other than its own. 

VLs describe the connectivity between V/PNFs. Differently from VNFs, VLs does not implement any 
business logic, so their definition is mostly concerned to requirements on protocols and performance. 
Shortly, a VL is characterized by the connectivity type, which includes protocols (e.g., Ethernet, IPv4, 
pseudo-wire, MPLS, etc.), flow patterns (e.g., line, tree, mesh), and QoS parameters (latency, jitter, packet 
loss, priority). This information is used by the NFVO to configure correct paths in the underlying 
infrastructure. VL may be used to describe both intra- and inter-NFVIPoP connectivity. 

The VNFFG defines the topology of the service, i.e., how VNFs, PNFs, and VLs are connected together. 
Multiple VNFFG may coexist in the same network service. Each VNFFG selects a possible instance of the 
NS, opting for one among available profiles. The definition of a VNFFG may also include NFPs that 
describe a traffic flow in the NS based on policy decisions. An NFP is a sort of collection of classifiers and 
forwarding rules for the VNFFG so to steer the packets across the set of VNFs. Based on abstract service 
descriptors, the NFVO generates the sequence of VNF to be traversed and set the appropriate 
configurations on VNFs and VLs. 

A.3 IETF Service Function Chaining 

The IETF SFC framework [9] defines a new approach to service delivery and operation, built around 
the idea of an abstract view of the required service functions and the order in which they are to be 
applied. It fundamentally represents the latest evolution of software- defined networking, by adding 
unlimited processing capabilities to basic routing, forwarding, and filtering functions. The SFC 
architecture envisions both a control plan and a data plane; the main elements of the data plane are the 
SFC classifier, Service Function Forwarder (SFF), Service Function (SF), and SFC proxy. The traffic is 
steered across the SFs by adding a Network Service Header (NSH), hence creating a sort of overlay over 
an unspecified networking infrastructure. Figure 17 shows a schematic view of the framework. 

 

Figure 17. IETF SFC architecture. 
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The SFC classifier assigns each packet to the proper flow, based on the classification rules set by the 
control plane. The identification of different flows typically reflects the target application. Each flow is 
identified by a service function path (SFP) ID, which is inserted in the NSH, and identifies the list of SFs 
to be traversed. The NSH also contains metadata that will be used to process the packet along the chain 
and to store the processing state. The SFP ID may change as the result of the processing of a SF, or 
because of incorrect or partial initial classification; the SFP is the actual sequence of SFs traversed by 
the packet when it exits the chain. 

An SFF forwards packets to SFs and/or other SFFs, according to the information present in the NSH 
(mainly, SFP ID and list of already traversed SFs). SFs process packets, by implementing network 
functions (e.g., firewall, DPI). They process packets belonging to several SFPs and can be present with 
multiple, distributed instances for scalability and resiliency. SFs may take different decisions based on 
the SFP ID and may update the NSF with an updated context, to be used by the next SFs. The architecture 
also envisions a SFC proxy to interface legacy SFs that do not understand the NSH. 

In the SFC architecture, forwarding rules are installed in SFF components by the control plane. Such 
rules are set according to high level policies that define a processing pipeline as an ordered (and 
conditional) sequence of SFs. It is worth pointing out that the SFC architecture does not specify a 
management plane for deployment and life-cycle operations of SF/SFF. Indeed, the ETSI NFV 
architecture is often referenced as possible management plane. 

A.4 Comparison and considerations  

TOSCA is a very flexible abstraction for cloud applications, which can easily represent software, 
scripts, virtual machines, containers, relationships, and resources for their deployment. Though 
explicitly designed with cloud applications in mind, the model is very expressive, so that it can also be 
used for network services [6]. TOSCA shares with OpenStack its cloud-oriented origins, so it mostly 
focuses on the description of deployment and operation rather than the architecture of the runtime 
system. A TOSCA model describes the logical structure of the execution environment, which can be built 
based on the mutual dependencies between software components and resources (virtual machines, 
operating systems, libraries, application servers, applications). TOSCA supports both declarative and 
imperative processing; all TOSCA models include artefacts for their deployment, configuration, and 
management. The derivation of alternative deployment flavours in TOSCA requires the definition of 
different implementation artefacts for Node and Relationship Templates, but basically does not affect 
the original Topology Template. 

ETSI NFV is more tailored to the specific environment, made of VNFs and network links. While TOSCA 
prefers a declarative approach, leaving the runtimes the burden (and freedom) to find the better 
deployment strategy, ETSI NFV relies on a binding orchestration framework to do most of the work in a 
standard way. As a matter of fact, the ETSI framework delivers predefined execution environments for 
VNFs (in the form of virtual disk images) instead of describing software components, resources, and 
their dependencies. Indeed, ETSI MANO orchestrates the composition of network services, but it is not 
interested in dynamically creation of VNFs from their software model. 

The description of NSs and VNFs in the ETSI framework is quite complex, since it aims at covering 
multiple heterogeneous deployment scenarios. ETSI NFV MANO details resource requirements in the 
NS but does not extend to the resource model. Instead of defining high-level policies and relying on an 
optimization engine, the ETSI model enables the definition of many flavours, which differ for the VNF 
implementation, the number of instances, affinity rules, scaling rules, performance requirements. This 
simplifies the implementation of the orchestrator (NFVO), which is mostly requested to select one 
option among those defined by the vendor, and the certification of performance and reliability indexes, 
since the number of alternative deployments are known. However, it also reduces the flexibility, since it 
may be difficult to extend the service with additional configuration options that were not envisioned at 
design time.  
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IETF SFC focuses mainly on the operation of the service, not how it is described, and treats the SFs as 
black boxes, considering the chaining of the SFs and the criteria to invoke them as specific to each 
domain. Independence from the underlying forwarding topology is one explicit target for the IETF 
framework, which for this reason does not consider resource description. 

Enriching a TOSCA application with the ASTRID framework would require some modifications to the 
Topology Template: 

 the ASTRID runtime subsystem should be inserted as Node Template; 

 cloud applications should be enriched with additional Node Templates for the ASTRID 
monitoring and inspection agents. 

The interconnection between local agents and the runtime subsystem can be done by the 
implementation artefacts of the above Templates, hence requiring no modifications to other standard 
components. Indeed, some additional management plans in the Service Template may be required to 
include security-related reaction operations (as removal or replacement of compromised software). 

For ETSI NFV, the enrichment needed by the ASTRID framework should consider the following points: 

 creation of software images for VNFs that includes the necessary kernel hooks and user-space 
agents for collecting events, logs, measurements; 

 the definition of connection points to interconnect VNFs with the centralized ASTRID 
framework;  

 the definition of deployment flavours that include the necessary interconnection between 
VNFs and the ASTRID security orchestrator (run-time environment), and require encryption 
and integrity mechanisms; 

 the preparation of specific lifecycle management scripts for each VNF that implement reaction 
strategies when triggered by the ASTRID security orchestrator (e.g., termination, isolation, 
replacement of the VNF instance). 

The IETF SFC architecture mainly defines the additional headers to steer packets across multiple SFs 
but does not consider any standard representation of control policies. This means that it is difficult to 
define a standard procedure for the enrichment process, since there is no common abstraction of the 
network service. The lack of a management framework also hinders the definition of common 
mechanisms for reaction and prevention, since there is no way to change, replace or terminate a SF/SFF. 
In this case, to fully benefit from the dynamicity of the ASTRID framework, the IETF SFC system should 
be used in a more general context, also including service orchestration. 
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Annex B Interface to Network Security Functions (I2NSF) 

Fast-evolving threat vectors and ever more complex cyber-attacks are making challenging the design 
and operation of effective cyber-security infrastructures, not to mention the difficulty to fulfil regulatory 
requirements. This problem mainly affects small and medium enterprises, which often suffer from a lack 
of security experts to continuously monitor network, acquire new skills, and propose immediate 
mitigations. Externalization of security management is emerging as a possible solution. 

More and more service providers are today offering cloud-based security services, especially for 
network protection, by hosting network security functions according to cloud models [18],[19],[20]. 
Alternative solutions are possible to integrate external security services for attack detection and 
mitigation into the enterprise (see Figure 18): 

 Always-On: All traffic is permanently diverted towards the cloud service, which analyses all 
packet streams and removes any attack. At the customer site, packets are only accepted from 
the cloud service (through secure channels). 

 On-demand: Network traffic is normally delivered to the customer site, where traffic statistics 
are collected by the ingress router and reported to the external cloud service. In case of 
anomalies in the flow statistics, all traffic is diverted towards the cloud, which now behaves 
like in the Always-On case. 

 Hybrid: Protection devices are deployed at the enterprise edge. They analyse and clean 
network traffic; in case they are not able to mitigate the attack (e.g., large volumetric attacks 
or unknown attacks) traffic is diverted towards the cloud service. 

 

  

 a) Always-on b) On-demand c) Hybrid 

Figure 18. Cloud protection services. 

Always-on and On-demand services better fit the need of small- and medium-sized businesses, which 
often do not have the budget for expensive security equipment and staff, whereas hybrid solutions 
represent a smooth transition path for larger enterprises that already have their internal solutions and 
cannot accept full externalization. 

Currently, the usage of cloud-based network security services has some main drawbacks. Every 
vendor uses different interfaces for its cloud-based services, hence different solutions must be 
developed by alternative security service providers16. Moreover, traffic diversion usually relies on BGP 
mechanisms, which are very slow and undermine the possibility for quick reaction and seamless 
operation. Based on these considerations, the I2NSF working group aims at defining a set of software 
interfaces and data models for controlling and monitoring aspects of physical and virtual NSFs, enabling 
clients to specify rulesets. As there are many different security vendors or open source technologies 

                                                             
 
16 The I2NSF technical documentation uses the more generic term “service provider” to indicate the entity that provides 
security services. We intentionally avoid this nomenclature, which may be confusing with the main part of this document, and 
always indicate that entity as “security service provider” or just “security provider.” 
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supporting different features and functions on their devices, I2NSF only focuses on flow-based NSFs that 
provide treatment to packets/flows, such as Intrusion Protection/Detection System (IPS/IDS), web 
filtering, flow filtering, deep packet inspection, or pattern matching and remediation. 

B.1 Use Cases for NSFs 

RFC 8192 selects several use cases where standard interfaces are required for monitoring and 
controlling the behaviour of NSFs [14]. These use cases show how NSFs from multiple vendors can be 
composed together by security providers through their management entities to automate the creation, 
configuration, and disposal of security services.  

Network Service Providers (NSPs) can implement vNSFs as part of the progressive softwarization 
process of their access networks. The implementation of NFV enables NSP to easily create and connect 
vNSFs close to users, hence representing a valid alternative to physical middleboxes. The range of 
potential users include residential users, enterprise, mobile users, and also management systems, each 
with its own access clients. For instance, residential users may request parental control, content 
management, threat management (web contents, mail, files download).  Enterprises may be interested 
in blocking web sites or social media applications, phishing attacks, malware, botnet, DDoS, and others. 
Service providers may need policies to securely and reliability deliver contents to their customers, 
provide isolation between multiple tenants, block malware and DDoS. 

In cloud data centre, virtual firewalls can be used to add more filtering capacity when bandwidth 
utilization hits a certain threshold for a specified period of time. The need to deliver on-demand security 
services motivates the implementation of such appliances in software or virtual forms, rather than 
hardware appliances. This is also necessary in order to place the firewall instances in the right zone, 
close to the rack of servers where protected applications are running. Indeed, the deployment of 
standalone physical appliances for each customer is not technically and financially possible, whereas 
sharing them complicates their management. The typical requirements is therefore the ability to 
dynamically deploy and configure virtual firewalls within the tenant partition, according to the position 
and topology of the user service and its required security policies.  

Firewall rules are usually expressed in terms of allowed/blocked addresses, ports, protocols, and a 
few other parameters. Though the same concept is applied in almost all products, the syntax for rule 
configuration changes from vendor to vendor, making it difficult for automation. With complex service 
topologies, the identification of all rules that satisfy all security requirements is usually difficult (and 
error-prone). Indeed, integrated firewall solutions in cloud management software often provider 
“security groups” or similar feature to easily identify the set of servers allowed to freely communicate. 
More automation in the deployment of firewall policies would therefore benefit from standard 
interfaces, which works across multiple vendors and utilize dynamic key management. 

Cloud environments provide isolated execution sandboxes, even made by multiple interconnected 
computing units, but substantially confined to a single data centre or the set of data centres belonging 
to the same provider. Apart basic firewalling functions, there is currently no standard security services 
implemented by every provider. The interconnection of cloud services with the enterprise or other 
external networks must be completely managed by the users. Further, cloud users must trust cloud 
providers, without any visibility on security policies that are applied to protect the infrastructure 
from external and internal threats. Indeed, no standard interfaces exist to retrieve and manage security 
policies in a consistent way across different providers. 

The convergence of multiple network services to a common network infrastructure cuts down 
CAPEX and OPEX, but also raises more management concerns due to the inter-dependency that are 
created among the different domains. Examples of service networks include the Void over IP (VoIP), 
Voice over LTE (VoLTE), Content Delivery Networks (CDNs), Internet of Things (IoT), Information-
Centric Networks (ICNs). Attacks to one of these networks may easily jeopardize the operation of other 
networks, when proper isolation mechanisms are not correctly applied (e.g., network segmentation, 
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network slicing). Preventing DDoS, malware and botnet attacks is not easy, especially when client 
devices do not confirm to strong security standards (e.g., IoT). The presence of multiple network must 
not foster the proliferation of bespoke security services and tools. Rather, a standardization effort is 
required to develop interfaces that are user case independent and technology agnostic, i.e., able to 
support multiple protocols and data models. This would simplify the application of common security 
policies across multiple environments, would facilitate the coordination of prevention, reaction, and 
mitigation measures, and would improve early detection through larger visibility on the execution 
environment. 

The sensitive and critical nature of many digital services requires organization to comply with 
regulatory and compliance security policies, so to isolate various kinds of traffic as well as to be able 
to show logs and records in case of audit. Examples include the Payment Card Industry – Data Security 
Standard (PCI-DSS) or the Health Insurance Portability and Accountability Act (HIPAA). Common 
interfaces to multiple security tools would facilitate the tracking of applied security policies, security 
events, and security incidents. This could be used in case of audit as proof that traffic was isolated 
between specific endpoints and all required measures were applied. 

B.2 Challenges to provide NSFs 

Provisioning of NSF, both in physical or virtual forms, currently faces many challenges, for both 
service providers and customers [14]: 

 The heterogeneity of NSF in terms of services and features. As a matter of fact, security 
functions may be deployed at the network perimeter, in DMZ, on single devices, both in 
centralized or distributed forms. Possible services range from access control (firewalling, 
deep-packet inspection, proxies) to detection and mitigation (IPS, IDS), authentication 
services, endpoint protection, monitoring and correlation (SIEM), encryption and integrity 
(VPN concentrators and gateways, security gateways). This complicates the definition of 
common models and interfaces to describe the features and configurations. 

 The heterogeneity of control and management interfaces. Given the heterogeneity of NSFs 
and the lack of accepted industry standards, control and management APIs are substantially 
different for any vendor. This complicates automation of such services, since it is difficult to 
translate security policies into a different set of control commands.  

 The difficulty in monitoring and tracking the effects of security policies. This is necessary 
to know that the intrusion has been stopped, as well as to access the effectiveness of mitigation 
and response actions. Customers want this monitoring feature in order to plan for the future 
using “what-if” scenarios with real data. A tight loop between policies and configurations can 
reduce the time to design and deploy workable security policies that deal with new threats. 

 The increasing usage of dynamic and distributed environments. With the advent of 
software-defined technologies for computing and networking, more clients and applications 
need to dynamically update their security policies, hence to dynamically change the 
configuration of NSFs. The problem is not limited to the provisioning and allocation of NSFs, 
but also extends to the translation of security requests to configuration commands. A single 
NSF may also be shared by multiple tenants, especially when it is implemented with elastic 
cloud-based technologies, leading to the needs of partitioning resources and avoiding 
conflicts. 

 Lack of characterization and exchange of capability. Even the same kind of NSFs may have 
rather different capability. The knowledge of such capability (either by static description or 
automatic registration) is required to select and compose NSFs to create specific security 
services. In addition, (dynamic) negotiation of resources is necessary to size and adapt NSFs 
to variable workloads. 
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 Lack of mechanisms to utilize external databases. Many security functions depend on 
signature files, threat intelligence, or other attack description (often referred as “profiles”). 
There is currently no standard way to build external profiles to be shared by multiple NSF 
instances; indeed, the effectiveness of the protection heavily relies on the updates supplied by 
each vendor. As new and more complex threats arise, protection can be improved if 
enterprises, vendors, and service providers cooperate to develop shared profiles. 

 Lack of automation and integration with software-defined infrastructures. Effective 
response to known attack would benefit from more automation. This is possible if a standard 
mechanism exists to signal anomalies, so that a security controller can re-configure the 
environment, both NSFs and network policies (routing, forwarding, filtering). 

 Lack of management tools for dynamic key distribution to NSFs for building security 
associations.  

 Lack of tools and frameworks for managing high-level policies. Customers may not have 
the security skills to select the right set of NSFs and define their configuration. They usually 
have expectations about their high-level security requirements (protect against external 
DDoS, guarantee availability of a group of servers, ensure confidentiality and integrity of 
communications with external sites, etc.). Unfortunately, there is no standard tool today for 
translating these high-level policies into security functions and their configuration. 

B.3 I2NSF framework 

I2NSF defines a framework to manage and control external NSFs. The framework assumes the 
presence of “security users” or “customers”, which need security services provided by NSFs. The 
reference model for I2NSF is based on two functional layers: 

 The Capability Layer specifies how to control and monitor NSFs. I2NSF will standardize a set 
of interfaces by which a customer can invoke, operate, and monitor NSFs. 

 The Service Layer describes how client’s security policies may be expressed. This is not 
limited to enforcement and protection actions, but also includes monitoring to build 
situational awareness. 

Between the two layers, the I2NSF Mgmt System translates policies into commands for NSFs. A client 
might also interact directly with one or more NSFs through the Capability Layer, but in this case,  it will 
lose the abstraction brought by the Service Layer. From a business perspective, the operation of the 
I2NSF framework requires a new actor, the Security Service Provider. With respect to the framework 
users, it can be an internal or external entity. For example, it could be the internal IT security group of a 
large enterprise; in case of full externalization, it could be a cloud service provider or an independent 
entity. 

Figure 19 depicts the I2NSF Reference Model and identifies the I2NSF interfaces [15]. I2NSF Users 
define, manage, and monitor security policies for specific network flows within an administrative 
domain, through the I2NSF Consumer-Facing Interface. The I2NSF NSF-Facing Interface is used to 
specify and monitor security rules enforced by one or more NSFs. Finally, the I2NSF Registration 
Interface defines the capabilities of the NSFs, which can be either statically configured or dynamically 
retrieved.  
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Figure 19. I2NSF Reference Model [15]. 

B.3.1 I2NSF Users and Consumer-Facing Interface 

I2NSF Users may be humans (i.e., ICT staff in the enterprise) or their management clients (upstream 
application, BSS/OSS of network service provider, orchestration software, security portals, etc.). This 
covers different use cases, where security services are offered to large enterprises, small- or medium-
sized businesses, and retail customers [14]. For example, a video-conferencing manager may 
dynamically inform the underlay network to allow, rate-limit, or deny flows (some of which are 
encrypted) based on specific fields in the packets for a certain time span. The Consumer-Facing Interface 
is specifically conceived to decouple security services from NSFs, allowing portability across different 
administrative domains.  

Different levels of abstraction could be used to express security policies. In general, customers may 
not have the skills to define configurations and flow-level policies. For this reason, this interface is 
expected to model expectations, goals, or intents of the functionality desired by customers. Customers 
may give indicate which types of destinations are (or are not) allowed for certain users (e.g., enable 
Internet access for authenticated users, streaming media applications are prohibited on the corporate 
network during business hours, and so on).  

Despite of their simplicity, some user policies may need multiple NSFs located in different places to 
achieve the desired behaviour. Clearly, the specification of user policies with very similar models than 
flow policies simplifies the translation. 

B.3.2 NSFs and NSF-Facing Interface 

Network Security Functions are physical or virtual instances of monitoring and enforcing appliances. 
They are expected to implement two sub-interfaces: 

 operational and administrative interface, which is used to change the status and configuration 
of the NSF, in order to dynamically change their behaviour; 

 monitoring interface, which can be query- or report-based.  

The number of different types and implementations of NSFs is very large, so it may happen that the 
set of available NSFs are not able to fulfil the customer’s request. The I2NSF system must therefore 
support dynamic discovery of capability, as well as query mechanisms, so that the management system 
can select the functions that satisfy the customer requirements. Dynamic negotiation will also allow to 



 

Page 72 of 76 

 
Deliverable D1.2 

 

tune the requirements based on available services/features. The outcome of the negotiation would feed 
the I2NSF Management System, which would than dynamically allocate appropriate NSFs and configure 
the set of security services that meet the requirements of the user. RFC 8329 [15] has already identified 
preliminary characteristics, categories and fields for discovery and registration of capabilities. 

B.3.3 I2NSF Security Controller 

At the heart of the I2NSF Management Framework, a Security Controller mediates between user’s 
policies and NSF. The Security Controller receives user’s policies (in terms of requirements, intents, 
goals) from customers and translates them into commands that NSFs can understand and execute. The 
NSF management includes six fundamental operations: create, read, write, delete, start, and stop. They 
cover both the management of imperative policy rules and management of the NSFs. The Security 
Controller also gathers monitoring reports (e.g., statistics) from the NSFs and passes back them to the 
customer. The Security Controller does not only collect individual service information but can also 
aggregate data suitable for tasks like infrastructure security assessment. 

The I2NSF framework assumes the definition of flow-based policy rules. Flow level policies may be 
defined as imperative Event-Condition-Action (ECA) constructs, that define how the system react to 
given events and conditions. Flow-based NSFs are based on stateful processing, i.e., they consider both 
the packet content (headers and payload) and context (session state). Currently, the main focus is only 
on imperative paradigms for policy rules. Even though security functions come in a variety of form 
factors and have different features, ECA rules would support a wide range of possible behaviours for 
flow-based NSFs.  

Flow-based policy rules should match quite well the NSF-Facing interface, since most types of events, 
conditions, and actions are common to many security functions, even if different information and data 
models are used by different vendors. For example, events can include current date/time, notification 
of state change, user logon/logoff. Conditions may be related to the value of some fields in the packet 
header (source/destination addresses, ports, protocol type, flags, etc.), packet size, direction of the 
traffic, geo-location, connection status. Actions may include processing on incoming/outgoing packets 
(pass, drop, rate limiting, mirroring, encapsulation, forwarding, transformation), loading of functional 
profiles (IPS profile, signature file, virus definitions, etc.). 

On the other hand, the definition of user policies follows more a goal/intent approach, which in 
general does not reflects the operations of NSFs. In this case, the translation is far more challenging. For 
this reason, the I2NSF framework is currently limiting the scope to user policies that can be modelled as 
closely as possible to flow security rules used by individual NSFs. A I2NSF user policy should therefore 
adopt the ECA structure, but with more user-oriented expression for events, packet context and context, 
and enforcement actions. In this case, an event could be “user has authenticated”, a condition may be 
“user identifier”, and action something like “establish encrypted channel.” 

Management of NSFs include provisioning and life-cycle operations (start, stop, scale, update), 
configuration of operational attributes (network addresses, endpoints, number of internal threads, log 
files, etc.), signalling, and setup of policy rules (this latter already discussed in the previous paragraphs). 
NSFs could be clustered together and managed by a common system; in this case, the Security Controller 
interacts with the NSF Manager directly (Figure 20). 
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Figure 20. I2NSF management architecture. 

The presence of an NSF Manager is a typical case for vNSFs provided by IaaS. In this case, it can 
dynamically create NSFs for each user and control its whole life-cycle, from instantiation to termination. 
An NSF Manager can also be used with physical and SaaS instances, which statically deployed by the 
Security Provider, but could be chained or composed at run-time to create tailored security services. In 
this case, the NSF Manager hides the number and heterogeneity of the underlying NSFs to the Security 
Controller and becomes responsible to translate policy rules and ensure their consistency across the set 
of NSFs. 

B.4 Security and trust 

The externalization of security services improves the flexibility and resilience, but also brings 
additional threats due to the lack of security perimeter, multi-tenancy, and third-party infrastructures. 
The most relevant threats associated with an NSF platform are [15]: 

 the control of NSFs by unauthorized users, who may change the policy rules so to bypass the 
intended behaviour or to cause DoS; 

 misuse by authorized users, who may bypass isolation mechanisms to  

o alter the configurations of other users in the underlying NSFs; 

o take control of an entire NSF or provider platform, by exploiting vulnerabilities in the 
application or control protocol; 

 loss of integrity of the NSF software or the underlying platform, which undermines the correct 
operation and privacy requirements by all users and can be due to: 

o physical attacks to the platform, by console or serial lines, to modify the behaviour of the 
hardware/software with the same level of privileges as the provider;  

o malicious service providers that modify the software (Operating System or NSF 
implementation), this represents the most critical case since service providers are the 
ultimate responsible to detect attacks to the infrastructure. 
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B.4.1 Secure communication channels 

The recommended security mechanisms include:  

 authentication, authorization, accounting, and auditing for all users and applications that 
access the I2NSF environment; 

 attestation of NSFs by service providers or third parties, so to detect changes to the I2NSF 
environment. 

According to the reference model shown in Figure 19, the primary vulnerable point for an I2NSF 
platform is the Customer-Facing interface, which is publicly exposed to all users. This interface may be 
subject to spoofing, eavesdropping, replication, alteration, privilege escalation, misuse, DoS. A mutual 
authentication is therefore required between users and the Security Controller, as well as a trusted 
connection upon successful authentication. The basic requirements for a trusted connection are not 
limited to confidentiality and integrity, but also entail strong authentication of the peers and attestation 
of their integrity. 

Based on the overall framework scope, the NSFs are not expected to be directly attached to the 
Security Controller, but to be distributed across the network. There can be a common network for the 
NSF-Facing interface and data traffic processed by the NSFs or, better, a dedicated network for 
management purposes only. In either case, packet loss could happen due to failure, congestion, attacks, 
or other reasons. Therefore, the transport mechanism for the management interface must be secure. 
The I2NSF framework does not require reliable transport mechanisms; rather, reliability should be 
directly implemented in the interface protocol by introducing explicit acknowledgement of messages 
into the communication flow. This would achieve better latency in the delivery of control messages. 

Indeed, the selection of security mechanisms for the NSF-Facing interface depends on the specific 
network segment between the Security Controller and NSFs. When the I2NSF platform is built in a single 
administrative domain (e.g., it is implemented by a Network Service Provider in its own infrastructure), 
it can be safely assumed the substantial isolation and protection of the communication environment. In 
this case, some requirements on authentication and trustworthiness could be partially loosened. 
Instead, in open environments where the NSFs functions are hosted in multiple external domains, more 
restrictive security control should be placed over the same interface. The same procedure as for the 
Customer-Facing interface could be used to establish a trusted connection. 

B.4.2 Remote attestation 

While it is true that any ICT environment is vulnerable to get compromised by malicious users with 
physical access, the application of attestation mechanisms improves the trustworthiness of the system 
by raising the degree of control and physical activity that are needed to perform untraceable 
modification of the environment. 

Within the I2NSF framework, remote attestation is an inescapable requirement to properly address 
the cooperation between different actors in disjoint administrative domains: users (I2NSF customers), 
security providers (I2NSF service providers), and security functions (I2NSF Network Security 
Functions) [17]. 

From the user perspective, the establishment of trust in a I2NSF platform requires two steps: i) verify 
the authenticity of the Security Controller, and ii) get proof that NSFs and policy rules are compliant 
with their security choices. 

To set up security services through a NSF platform, the user’s client connects and authenticates to the 
Security Controller. However, before initiating authentication and authorization procedures (and likely 
accounting and auditing), the client wants to attest that it is connected to a genuine Security Controller. 
Two properties characterize the genuineness of the Controller: its identity and its integrity. Afterwards, 
the client can authentication, start a trusted connection with the Controller, and ask for some security 
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services. Before any traffic is actually redirected through the set of NSFs, the client must be sure that it 
will be processed according to the user policies. The attestation of the selected NSFs and the applied 
policies must happen at initialization and may be optionally repeated at run-time to detect any following 
loss of integrity. The attestation of a NSF platform include multiple elements, some of which are present 
in all possible implementations: firmware, OS, NSF software, in a virtualized environment, the 
virtualization system (hypervisors, host OS, container frameworks, …). 

The attestation of NSF platforms can be enough in case of hardware implementations connected by 
physical links, which represents a static configuration that can only be modified by the infrastructure 
provider. However, the dynamicity brought by software-defined networking paradigms, like SDN, NFV 
and SFC raises additional concerns about the correctness of the network topology (which could bypass 
the security functions), hence demanding for attestation of the network configuration as well. 

The enabling technology for remote attestation is trusted computing. The underlying concept is the 
presence of hardware which serves as a trust anchor to start a chain of attestations (i.e., chain of trust). 
Currently there are two main trends in this area, driven by two standardization bodies: The Trusted 
Computing Group (TCP) and the Global Platform (GP). The TCP define the Trusted Platform Module 
(TPM) [21], a collection of cryptographic functions often implemented by a dedicated hardware chip 
outside the main processor. The GP specify the Trusted Execution Environment (TEE) [22], this is a 
secure isolated environment on the same System-on-Chip (SoC). The I2NSF framework is currently 
considering the TPM solution. The TPM defines an architecture with the following capabilities: 
performing public key operations, computing hash functions, key management and generation, secret 
storage of keys and other secret data, random number generation, integrity measurements, attestation… 
It uses a transitive mechanism: if a user trusts the first execution step (i.e., the hardware root of trust, 
RoT), and each step correctly verifies the integrity of the next executable firmware/software, then the 
user can trust the whole system. In more concrete terms, every boot stage (BIOS, Bootloader, Security 
Controller) measures the integrity of the following piece of software and stores it inside a log that 
reflects the different boot stages, which is then signed with the private key of the RoT. In a TPM, 
measurements of the software stack are concatenated, so that an unlimited number of measures can be 
stored in a single on-board Platform Configuration Register (PCR).  

The I2NSF also envisions the possibility of a trusted boot for safely storing secrets. In this case, the 
PCR values could be used as an identity for decrypting confidential information on the server (as 
encryption keys or sensitive configuration). The basic idea is to encrypt such data by the root of trust, 
and then subordinate decryption to a particular platform status (i.e., a set of PCR values). This ensures 
that only trusted software can access keys and other sensitive materials for authentication (for instance, 
the private keys used to create the secure channel with the client: TLS, IPSec, etc.). 

As final consideration, we argue that remote attestation entails the knowledge of the exact 
firmware/software configuration of both the Security Controller and NSF platform, which might help 
identify vulnerabilities. The client may delegate a Trusted Third Party (TTP) to compute the integrity of 
the Controller, hence avoiding the implementation of the whole attestation mechanisms. 

B.4.3 Security Controller attestation 

The attestation of the Security Controller is a required step for establishing a trusted communication 
channel. A trusted channel is more secure than an encrypted channel. It entails stronger verification of 
the identity of the Security Controller, by including its public key or certificate in the measurements of 
the chain of trust. This prevents spoofing and man-in-the-middle attacks, since a malicious user cannot 
push its certificate in the chain of measurement of the genuine platform. However, there is still the case 
where the confidentiality of the private key is lost. This can be solved by a Platform Property Certificate, 
which binds system properties instead of binary data [23]. Such certificate could connect the platform 
identity with the Attestation Identity Key (AIK) public key, so hindering the usage of the stolen Security 
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Controller’s key on a different platform (the attacker cannot create a quote with the AIK of the other 
platform). 

The procedure to establish a secure connection with the Security Controller will include therefore the 
following steps: 

1. The client begins the handshake with the Security Controller. 

2. The client receives the certificate of the Security Controller. 

3. The client asks the Security Controller to generate an integrity report. 

4. The Security Controller retrieves the measurements and asks the TPM to sign the PCRs with the 
AIK. The signature provides evidence that the measurements belong to the Security Controller. 

5. The client checks the integrity report, by verifying the quote and the certificate associated to the 
AIK. The client also checks that the digest of the certificate received at step 2 is present among 
measurements. These operations can be delegated to a TTP, which may be useful in case of 
lightweight clients. 

6. If the remote attestation is positive, the client continues the handshake and establishes the 
trusted channel; otherwise, the connection is closed. 

B.4.4 NSF platform attestation 

The attestation of the NSF platform checks the integrity of the NSFs and their correct behaviour. 
Platform attestation does not cover the mechanism used to translate user policies into policy rules and 
NSF configurations, which would be technically too complex (if not unfeasible). The trustworthiness of 
this process indeed relies on the integrity and attestation of the Security Controller, which the client 
selects as the reliable intermediary for managing its security services. 

The attestation of NSFs can therefore include the integrity of the software, the hosting environment 
(a physical device, a virtualization platform), and the running configuration. The quotes can be 
compared with the status information maintained by the trusted Security Controller, with the same 
procedure that could also be used to SDN (see Section B.4.5). 

B.4.5 Topology attestation 

Two methods exist to attest the deployment of a topology of a software-defined network topology. 
The first one is based on typical SDN operation, like in case of OpenFlow, and the second targets the 
application of SFC.  

In the first case, each network node provides measures on its forwarding configuration, which are 
aggregated and signed by a TPM module. The attestation is then compared with the configuration 
retrieved from an SDN controller, to verify the correct behaviour of the network. 

In the second case, the Proof of Transit can be applied. This mechanism injects specific packets 
requesting POT and verifies at the egress point of the service path that a correct topology has been 
enforced, by means of the cryptographic proof provided by POT. 
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