

DELIVERABLE D1.1

STATE OF THE ART, PROJECT CONCEPT AND

REQUIREMENTS

Grant Agreement number: 786922

Project acronym: ASTRID

Project title: AddreSsing ThReats for virtualIseD services

Start date of the project: 01/05/2018

Duration of the project: 36 months

Type of Action: Research & Innovation Action (RIA)

Project Coordinator:
Name: Orazio Toscano
Phone: +39 010 600 2223
e-mail: orazio@ericsson.com

Due Date of Delivery: M10 (28/02/2019)

Actual Date of Delivery: 27/02/2019

Work Package: WP1 ɀ Reference Architecture

Type of the Deliverable: R

Dissemination level: PU

Editors: POLITO

Version: 1.0

Page 2 of 159

Deliverable D1.1

List of Authors

POLITO POLITECNICO DI TORINO

Fulvio Valenza, Fulvio Risso, Riccardo Sisto, Guido Marchetto

CNIT CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI

Matteo Repetto, Alessandro Carrega

DTU DANMARKS TEKNISKE UNIVERSITET

Thanassis Giannetsos

ETI ERICSSON TELECOMUNICAZIONI

Orazio Toscano

INFO INFOCOM S.R.L.

Maurizio Giribaldi

SURREY UNIVERSITY OF SURREY

Mark Manulis

AGE AGENTSCAPE AG

Benjamin Ertl

UBITECH
GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON
PLIROFORIKIS ETAIREIA PERIORISMENIS EFTHYNIS

Anastasios Zafeiropoulos, Eleni Fotopoulou, Thanos Xirofotos

TUB TECHNISCHE UNIVERSITAET BERLIN

Tran Quang Thanh, Stefan Covaci

Page 3 of 159

Deliverable D1.1

Disclaimer

The information, documentation and figures available in this deliverable are written by the ASTRID
Consortium partners under EC co-financing (Call: H2020-DS-SC7-2017, Project ID: 786922) and do not
necessarily reflect the view of the European Commission.

4ÈÅ ÉÎÆÏÒÍÁÔÉÏÎ ÉÎ ÔÈÉÓ ÄÏÃÕÍÅÎÔ ÉÓ ÐÒÏÖÉÄÅÄ ȰÁÓ ÉÓȱȟ ÁÎÄ ÎÏ ÇÕÁÒÁÎÔÅÅ ÏÒ ×ÁÒÒÁÎÔÙ ÉÓ ÇÉÖÅÎ ÔÈÁÔ ÔÈÅ
information is fit for any particular purpose. The reader uses the information at his/her sole risk and
liability.

Copyright

Copyright © 2019 the ASTRID Consortium. All rights reserved.

The ASTRID Consortium consists of:

ERICSSON TELECOMUNICAZIONI (ETI)

UNIVERSITY OF SURREY (SURREY)

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (CNIT)

INFOCOM S.R.L. (INFO)

POLITECNICO DI TORINO (POLITO)

TECHNISCHE UNIVERSITAET BERLIN (TUB)

TECHNICAL UNIVERSITY OF DENMARCK (TUD)

AGENTSCAPE AG (AGE)

GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON PLIROFORIKIS ETAIREIA
PERIORISMENIS EFTHYNIS (UBITECH)

DANMARKS TEKNISKE UNIVERSITET (DTU)

This document may not be copied, reproduced or modified in whole or in part for any purpose without
written permission from the ASTRID Consortium. In addition to such written permission to copy, reproduce
or modify this document in whole or part, an acknowledgement of the authors of the document and all
applicable portions of the copyright notice must be clearly referenced.

Page 4 of 159

Deliverable D1.1

Table of Contents

DISCLAIMER .. 3

COPYRIGHT ... 3

TABLE OF CONTENTS .. 4

1 EXECUTIVE SUMMARY ... 6

2 INTRODUCTION ... 7

3 PROJECT CONCEPTS AND CURRENT TRENDS IN CYBER-SECURITY .. 7

3.1 THE VIRTUALIZATION WAVE: CLOUD, EDGE, AND FOG ... 8
3.2 INCREASING THREATS FROM CYBER-PHYSICAL SYSTEMS .. 9
3.3 CURRENT PRACTICE AND LIMITATIONS ... 10
3.4 CHALLENGES AND EMERGING TRENDS .. 11
3.5 TOWARDS INTEGRATED AND PERVASIVE SITUATIONAL AWARENESS .. 15

3.5.1 Context and enforcement ... 17
3.5.2 Detection and policies .. 17
3.5.3 Awareness and reaction .. 18
3.5.4 Forensics and legal validity ... 19

3.6 THE ASTRID CONCEPT ... 20
3.7 APPLICATION SCENARIOS .. 23

3.7.1 Situational awareness ... 24
3.7.2 Distributed firewalling .. 27
3.7.3 Network monitoring ... 29
3.7.4 Trusted and safe execution .. 31
3.7.5 Response to Attacks and Enabling Forensic Investigation ... 34
3.7.6 Lawful interception ... 36

4 RELEVANT TECHNOLOGIES AND APPROACHES ... 38

4.1 ORCHESTRATION MODELS AND STRATEGIES .. 39
4.1.1 Cloud Orchestrators .. 39
4.1.2 NFV Orchestrator ... 40
4.1.3 Northbound APIs .. 43

4.2 SPECIFICATION AND REFINEMENT OF NETWORK SECURITY POLICIES ... 43
4.2.1 NSP Specification ... 43
4.2.2 NSP Refinement ... 43

4.3 PROGRAMMABLE DATA PLANES FOR PACKET PROCESSING .. 45
4.3.1 Technologies for building fast data planes .. 46
4.3.2 Programming abstractions ... 50

4.4 DATA COLLECTION, FUSION, ABSTRACTION .. 51
4.4.1 Log Collectors... 51
4.4.2 Log Storage ... 52
4.4.3 Graph Databases .. 52

4.5 DETECTION AND ENFORCEMENT .. 53
4.5.1 Software analysis ... 53
4.5.2 Attack detection .. 57
4.5.3 Attack prevention and mitigation .. 60
4.5.4 Distributed frameworks for attack detection ... 61

4.6 LEGAL INTERCEPTION AND FORENSICS INVESTIGATION .. 62
4.6.1 Legal framework .. 64

Page 5 of 159

Deliverable D1.1

4.6.2 Standard references .. 67
4.6.3 Technological overview ... 70

4.7 IDENTITY MANAGEMENT AND ACCESS CONTROL ... 71
4.7.1 Development Trends ... 71
4.7.2 Related Standards: .. 72
4.7.3 Related Solutions .. 72

5 FRAMEWORK REQUIREMENTS... 75

5.1 METHODOLOGY ... 75
5.2 TAXONOMY ... 76
5.3 LIST OF REQUIREMENTS ... 77

6 REFERENCES.. 79

A.1 KERNEL HOOKS FOR USER-SPACE DATAPLANES .. 90
A.1.1 Raw socket interface ... 90
A.1.2 Data Link Provider Interface .. 90
A.1.3 PF_RING .. 91
A.1.4 Netmap .. 93
A.1.5 OpenOnload .. 94
A.1.6 Pcap library .. 96

A.2 DATAPLANES IN USER-SPACE .. 96
A.2.1 Data-Plane Development Kit (DPDK) ... 96
A.2.2 FD.io/Vector Packet Processor .. 98
A.2.3 Open Data Plane ... 100
A.2.4 BESS .. 101
A.2.5 Snabb ... 103

A.3 DATAPLANES IN KERNEL-SPACE .. 104
A.3.1 Berkeley Packet Filter (BPF) ... 104
A.3.2 eBPF .. 106
A.3.3 Open vSwitch (OVS) .. 111
A.3.4 Programmable dataplanes .. 114
A.3.5 P4 ... 114

A.4 PROGRAMMING ABSTRACTIONS ... 117
A.4.1 OpenFlow ... 118
A.4.2 OpenState/Open Packet Processor .. 119
A.4.3 NETCONF/RESTCONF/Yang .. 122

B.1 SOFTWARE THREATS MODELLING ... 125
B.2 INTRUSION DETECTION ... 126

B.2.1 Technologies and scope ... 127
B.2.2 Detection methodologies .. 129
B.2.3 Distributed detection .. 130

B.3 ENFORCEMENT OF NETWORK POLICIES ... 132
B.3.1 Firewalls ... 132

B.4 SECURITY ANALYTICS .. 133
B.4.1 Background technologies ... 134

Page 6 of 159

Deliverable D1.1

1 Executive Summary

This document reports the main outcomes of the preliminary technical activities carried out at the
beginning of the ASTRID project in Tasks 1.1, 1.2, 1.3 and 1.4. The collective purpose of these tasks was
to depict a general picture of evolving computing paradigms, to point out open challenges in cyber-
security management, and to lay the foundations for the definition of a new architecture that goes
beyond the limitations of existing approaches.

The rise of new forms of cyber-threats is largely due to massive usage of virtualization paradigms and
the growing adoption of automation in the software life-cycle. The analysis of Task 1.1 reveals that such
paradigms are progressively eroding the traditional boundaries of the security perimeter model and
integrating a growing number of weak devices and applications in existing industrial and commercial
processes. Security appliances today benefit from years of experience in fighting cyber-attacks, but often
lack the spatial and temporal visibility to properly tackle increasing stealthy, advanced, and persistent
threats. Yet their design is deeply tailored to physical infrastructures, hence falling short to meet the
flexibility, efficiency, effectiveness, and elasticity levels required by distributed virtual services. The
ASTRID concept implies tighter integration of security aspects in software orchestration, hence
leveraging security-by-design and easiness in adopting bleeding-edge detection methodologies. A
number of relevant application scenarios has been described to show how the ASTRID concept improves
current practice, and to point out the main challenges and technical requirements. Most of the technical
aspects highlighted by the devised scenarios are expected to merge into the two projectȭs Use Cases.

The concrete design and implementation of the novel concept of cyber-security for virtualized
services must take into account existing technologies and their expected evolution. The outcome from
Task 1.2 includes a number of alternative technologies for fast and flexible inspection and monitoring
of both the network and the software. It also shows that modern software orchestration paradigms have
the capability to dynamically create and manage detection frameworks tailored to the specific service
and users. In this respect, the prevailing types of security appliances have been briefly analysed,
highlighting the main aspects that affect the information and data base for identification of anomalies
and known attacks. In addition, best practices and the normative framework have been considered for
legal aspects, including traffic interception and forensics analysis.

Based on the Projectȭs concept and target application scenarios, Task 1.3 and 1.4 have initiated the
design phase by elaborating a number of functional and architectural requirements. These requirements
represent the preliminary guidelines for the ASTRID architecture, and will be further enriched with
more concrete implementation requirements in the context of Task 1.5.

Page 7 of 159

Deliverable D1.1

2 Introduction

This deliverable provides a summary of the information, data and methods that are preparatory to
the design of the ASTRID architecture. Specifically, this document is divided into three main parts,
corresponding to the contributions of different Tasks:

¶ project concepts and current trends in cyber-security elaborated by Task 1.1 (Section 3),
¶ relevant technologies and approaches identified by Task 1.2 (Section 4), and
¶ framework requirements devised by Task 1.3 and 1.4 (Section 5).

The first part of the document (Section 3) describes the project concepts and current trends in cyber-
security. In the first part, it explains how the massive usage of virtualization has led to
remote/distributed computing paradigms, including cloud, edge, and fog infrastructures (Section 3.1).
With the growing recourse to public infrastructures, IoT devices, and multi-tenancy for cost and
efficiency reasons, the boundaries between different domains fails physical and effective isolation,
making the security perimeter models largely ineffective and raising additional cyber-threats
(Section 3.2). Then, it recaps the current practice and highlights the main limitations in terms of
performance, visibility, security (Section 3.3). The analysis of challenges and emerging trends shows an
increasing need for flexibility, programmability, and autonomicity (Section 3.4), which motivate a
transition from discrete cyber-security appliances to integrated frameworks, based on composable and
interoperable layers corresponding to the main processes: context, detection, awareness (Section 3.5).
Based on these premises, the overall vision for virtualized services and the main ASTRID concepts are
illustrated (Section 3.6) and applied to a set of possible usage scenarios (Section 3.7).

The second part of this document (Section 4) analyses the relevant State-of-the-Art. Specifically, this
analysis focus on: (i) orchestration models and strategies (Section 4.1); (ii) specification and refinement
of network security policies (Section 4.2); (iii) programmable data planes for packet processing (Section
4.3); (iv) data collection and abstraction (Section 4.4); (v) distributed detection algorithms and
frameworks (Section 4.5); (vi) legal interception and forensics investigation (Section 4.6); (vii) identity
management and access control (Section 4.7). For the sake of brevity, all Sections focuses on the
relevance and applicability of specific technology to the ASTRID framework. Where relevant, additional
details are reported as Annexes.

Finally, the third part (Section 5) analyses the function and architectural requirements that come from
the main concept, objectives, and application scenarios previously discussed.

3 Project concepts and current trends in cyber -security

Several market forces, like the need for flexibility, externalization, outsourcing, and cost-effectiveness
are driving towards the creation of multi -domain and complex business chains and the large usage of
cloud resources, especially in the creation of cyber-physical systems. This approach undoubtedly leads
to more agility in service deployment and operation, even though the tight integration among diverse
business roles and the need to share infrastructure and data bring additional security and privacy
concerns that have not been addressed in a satisfactory way yet.

The general scenario depicted above can be further analysed by distinguishing two main trends. On
the one hand, the availability of ever richer and more powerful cloud services has largely pushed the
transition towards virtualization solutions, moving to the cloud even core and critical business
processes in the name of increased availability, cost-effectiveness, and agility. The advent of 5G
technology is expected to further accelerate this transition, by effectively integrating computing,
storage, and communication resources in large pervasive environments. On the other hand, evolving
business models and the large potential behind cyber-physical systems is fostering the transition from

Page 8 of 159

Deliverable D1.1

monolithic to modular architectures, spanning multiple administrative and business domains. The
success of industry-driven initiatives like FIWARE witnesses the need for common and standard APIs
to dynamically compose complex business chains made of software functions and smart things from
different vendors.

From a cybersecurity perspective, the rise of virtualization technologies and edge computing is
progressively widening the geographical area where valuable assets (servers, applications, virtual
ÓÅÒÖÉÃÅÓȟ ÓÍÁÒÔ ȰÔÈÉÎÇÓȱɊ ÁÒÅ ÄÅÐÌÏÙÅÄȢ !Ó Á ÒÅÓÕÌÔȟ ÍÏÒÅ ÁÎÄ ÍÏÒÅ ÂÕÓÉÎÅÓÓ ÐÒÏÃÅÓÓÅÓ ÁÒÅ ÂÕÉÌÔ ÏÎ
distributed, multi -domain, and heterogeneous environments, stretching well beyond the traditionally
safer enterpriseȭs networks and equipment therein. Unfortunately, cyber-security paradigms for
network threats have not advanced at the same pace.

3.1 The virtualization wave: cloud, edge, and fog

The cloud paradigm provides a cost-effective solution to run elastic applications, but also raises many
security concerns due to the hypervisor layer, outsourcing, and multi-tenancy [1] . As a matter of fact,
the attack surface is increased by the larger number of components: guest environments (virtual
machines), host operating systems (servers), hypervisors, management interfaces, shared storage and
networks. Sharing a common infrastructure has the unpleasant side effect that an attack to the
infrastructure affects many services and tenants (e.g., DoS on shared physical networks).

Though private clouds can be set up and operated internally by single organizations, the real benefits
come from outsourcing, when resources are rent from public infrastructures and there is no issue with
hardware management. Tenant isolation should provide independent and secure execution sandboxes,
leveraging technologies as hypervisors, network virtualization, and virtual storage. However, the shared
infrastructure widens the class of local adversaries, also including other tenants and the infrastructure
providers, raising new attack models (i.e., grey boxes, which involve tenants and their cloud providers)
in addition to mainstream white (i.e., employees) and black boxes (i.e., external attackers) [1] .

Software-based isolation introduces security interdependence in a multi-tenant environment: for
instance, DoS attacks against the physical network affect all virtual networks of all tenants, while a
compromised hypervisor is a potential source of eavesdropping and alteration for every hosted virtual
machine or software container. In any case, full trust in the cloud provider is required, since Trusted
Platform Modules are not broadly available yet.

While chasing for interactive and low-latency services, fog and edge computing are usually seen as
the cloud extension to support delay-sensitive applications, like autonomous driving, health services,
online gaming [2] . Lightweight tasks are run at the network edge, on local devices or network equipment
(base stations, radio network controllers, access points), while deep processing is left to large cloud
installations.

Fog computing clusters virtual resources from a heterogeneous set of devices deployed in the
environment, owned by different entities. Most security issues with fog computing come from the
hostile, uncontrolled, and unreliable environment. According to recent industrial efforts towards
standardization [3] , fog computing needs a management framework for deployment of software and
node-to-node communication. This software backplane has a similar role to cloud management
software (and interoperability is also expected to allow fog/cloud interaction), and will also be
responsible to implement trust, confidentiality, and integrity services (e.g., root-of-trust for trusted
execution environments, encrypted communication channels); clearly, it also represents the Achilleȭs
heel of a fog infrastructure that, if compromised, directly affects security and trust of all applications
and users.

Lacking any form of physical or virtual perimeter, fog nodes are more exposed to tampering, physical
damage, spoofing and jamming than cloud servers, similarly to what happens for IoT devices; however,
the attack surface is larger for fog nodes, because they are prone to injection of flawed information and

Page 9 of 159

Deliverable D1.1

malware, service manipulation, data leakage [4] . Yet, compromised fog nodes are far more threatening
than IoT devices, since they usually have more resources available, private data and privacy concerns,
and trust relationships with a larger number of other nodes and remote instances. Mobile fog nodes are
likely to take part into different federations over time, so they are more prone to get compromised and
to be used as Trojan horses in multiple infrastructures. Multi-ownership of such devices brings also
severe trust issues, introducing addition challenges for privacy and data leakage. Definitely, the nature
of the fog paradigm naturally leads to the threat of rogue and untrustworthy infrastructures.

Edge computing targets similar applications as fog computing, but with different architectures and
business models (the infrastructure is owned by a single operator and does not include userȭs devices);
in addition, edge computing explicitly leverages telco infrastructures to provide mobile edge services
like radio network information, location, bandwidth management [5] Edge computing has security
concerns similar to the cloud. However, distributed resources co-located with peripheral network
installations usually have less restrictions and control for physical access than traditional data centers,
hence the risk of tampering is not negligible. Resources will also be limited and subject to exhaustion,
due to space constraints and the cost for capillary installations, so DoS will be more likely than in the
cloud. The large number of installations in multiple locations will also complicate management, will
probably require more human resources (with different capabilities and security skills) and will
increase the risk of wrong, poor, or missing configurations.

Exposing APIs and service access points increase the attack surface and the potential impact of an
attack. As a matter of fact, such services give access to sensitive information about the physical and
virtual environment, including positioning and network traffic of other users. The integration of edge
computing with the legacy Operations Support System of the whole network also brings the risk that
successful intrusions and privilege escalations lead to control of large infrastructures and regional or
national communication services.

Finally, edge computing is expected to run orchestratable services, by dynamically composing several
applications together (e.g., for Network Function Virtualization). Orchestration tools are often designed
to dynamically select and load software images from specific repositories. In this case, external software
may run inside the security perimeter with all related security risks.

3.2 Increasing threats from cyber -physical systems

High-performance and pervasive wireless connectivity is the key technological enabler for designing
cyber-physical systems (CPS), where smart devices and software components are deeply intertwined
(e.g., smart grid, autonomous automobile systems, medical monitoring, process control systems,
robotics, etc.). In CPS, smart devices (sensors, actuators, robots, etc.) provide interaction with the
physical environment, while computing platforms host intelligence to take decisions and react to the
evolving context.

Implementation of CPS may leverage flexible and pervasive computing paradigms so as to effectively
address challenging performance requirements like latency and availability ; hence, they represent
typical extensions of the virtualization paradigms already discussed in Section 3.1. However, the
presence of smart devices brings additional security concerns.

There are a potential unlimited number of things that can be clustered together to build CPS, both in
everyday life (e.g., home network broadband gateways, digital video recorders and smart TVs, smart
appliances, implantable and wearable medical devices, connected cars) and industrial applications (e.g.,
sensors and actuators in SCADA systems and industrial automation). These resource-constrained
devices are typically equipped with very simple security services (for instance, password-based
authentication), while encrypted communications, integrity, intrusion detection, virtual private
networks, and other security measures are often missing. As a matter of fact, the processing overhead
to analyze packets, software, behaviours, events, and logs slows down systems and may be
unsustainable for simplest devices (smart-phones, sensors and smart things); moreover, the usage of

Page 10 of 159

Deliverable D1.1

custom embedded operating systems makes portability of security software more difficult than in user
terminals. In addition, even when security services are available, they are often disabled, left with
default values, or not configured for home appliances, because average users do not have enough skills
for proper configuration.

With the growing base of installed things connected to the Internet, cyber-criminals are expected to
have an almost infinitely large attack surface and huge availability of resources for large-scale attacks.
For instance, recent botnets like Mirai, Brickerbot, and Hajime have demonstrated the vulnerability of
IoT as well as the possibility to exploit compromised devices to carry out large DDoS attacks.

Though cyber-physical systems are not an explicit target for ASTRID, their interdependency with
cloud technologies is not negligible. In this respect, they should be taken into consideration when
designing the ASTRID architecture, and suitable collaboration links should be established with other
Projects dealing with this specific domain.

3.3 Current practice and limitations

With the increasing integration of IoT, cloud, edge, and fog resources in complex business chains
involving several (untrusted) parties, the security perimeter becomes elastic (since it grows and shrinks
according to resource usage) and usually encompasses external devices, software, and infrastructures.
The firewall (or similar appliance) at the network boundary inspects incoming and outgoing traffic but
does not protect against internal threats. The need to evolve towards distributed and capillary
architectures has mainly resulted in the concepts of distributed firewalls and virtual security appliances
for the cloud.

The concept of Ȭdistributed firewallȭ has been proposed for virtualization environments, to integrate
packet inspection and filtering in hypervisors, witnessing the importance of pervasive and capillary
control. Distributed firewalls for cloud computing build on the concept of micro-segmentation [5] , and
deploy packet inspection rules in hypervisors, while keeping centralized control. They enable very fine-
grained control over security policies, beyond mere IP-based structure [6] . For instance, vCloud Director
8.20 by VMware includes a distributed firewall, while OpenStack Neutron includes the Security Groups
feature. A distributed firewall removes the need for traffic steering (all network packets go through the
hypervisor, which is part of the firewall) and IP-based rule structures (through the notion of logical
ȰÃÏÎÔÁÉÎÅÒÓȱ ÏÒ ȰÓÅÃÕÒÉÔÙ ÇÒÏÕÐÓȱɊȢ

Despite their common usage in cloud networking, distributed firewalls have some important
limitations. First, this approach is currently effective for enforcing filtering rules, but does not have the
flexibility to provide deep inspection capability tailored to the specific needs for detecting threats and
on-going attacks. Second, they cannot provide the same guarantees of private enterprise networks:
external resources lie in third-party infrastructures where trust mechanisms are still missing (i.e., the
behaviour of physical hardware and networks cannot be controlled by cloud users). Third, their
application in multi - and cross-cloud environments is not straightforward, since their configuration is
based on internal communication mechanisms for each infrastructure. This issue will be even more
severe in cyber-physical systems, with the integration of smart things in cloud applications, which are
expected to be a consistent use case for 5G.

Given the reduced set of security features integrated in virtualization platforms and the increasing
needs for cross-cloud deployments, users are generally left most of the burden for protecting their
applications against external threats. Since, on first approximation, virtualization environments could
be viewed as special instances of physical networks, software-based versions of security middleboxes
(Intrusion Prevention/Detection Systems, Firewalls, Antivirus, Network Access Control, etc.) may be
integrated in service graph design [7] [8] . We argue that this approach comes with important limitations
in the current cyber-security landscape:

Page 11 of 159

Deliverable D1.1

¶ Performance: security appliances are traditionally deployed as expensive and proprietary
hardware modules. More and more vendors, such as Fortinet, Barracuda Networks, F5 Networks,
and CheckPoint, are offering software versions of their security appliances, mostly for data
centers and virtualized IT environments, which simplify deployment and re-configuration.
However, although they can be deployed on commodity servers, virtualized editions of security
appliances typically inherit the management interfaces of their hardware versions, thus
prohibiting unified vendor -agnostic management via open APIs. Further, virtualized editions of
security appliances do not benefit from hardware acceleration, and this may lead to inefficiency.
As a matter of fact, more than 80% of all new malware and intrusion attempts are exploiting
weaknesses in applications, as opposed to weaknesses in networking components and services,
hence rules have evolved from memoryless simple string matching to stateful automata (such as
regular expressions). Also, the increase in the complexity of protocols makes modelling their
normal behaviour increasingly difficult; as a result, more computing cycles per packet are
required either checking against more elaborate rules or trying to detect sophisticated
anomalous behaviours. Performances fall quickly, especially in case of large volumetric attacks.

¶ Context-awareness: the nature and composition of multi-vector attacks requires pervasive
monitoring and global view, and the deployment of Security Information Event and Management
(SIEM) software for effective detection, which may be too cumbersome and ineffective for small
applications and services.

¶ Attack surface: virtual security appliances are more exposed to attacks than their physical
counterpart, since they run in the same virtualization environment to protect.

¶ Propagation of vulnerabilities: the growing trend to re-use the same software for multiple
applications, often distributed as pre-package images, brings the risk of propagating software,
architectural, and configuration vulnerabilities to many applications running in different
infrastructures, which can become very dangerous botnets.

In a nutshell, virtual security appliances cannot exploit hardware acceleration, slow down virtual
machines, and require additional software instances; eventually, they are seldom used, and the overall
service usually results less secure and more prone to incidents than their physical deployments.

3.4 Challenges and emerging trends

Once the surrounding fence is no more able to stem the flow of external attacks, the need arises for
new forms of internal techniques that could effectively tackle a larger base of threats and attacks than
current solutions, correlate events in both time and space dimensions, feed novel disruptive approaches
capable of estimating the risk in real-time, and carry out focused and effective defensive and mitigation
actions.

Next generation frameworks for situational awareness are expected to combine fine-grained and
precise information with efficient processing, elasticity with robustness, autonomy with interactivity.
State of Art of commercial products and research efforts shows some general trends and specific
challenges in this respect: the shift from centralized to distributed architectures, the programmability
of the infrastructure, the chase to efficiency and performance, to need for robustness and data
protection, dynamic adaptation to changing environments and conditions through orchestration,
correlation of data in time and space, and suitable representation to humans. In the rest of this Section,
we analyze each of these factors in detail.

In recent years, a great effort has been undertaken to increase the programmability of communication
networks [9] . This allows fine-grained control over forwarding operation, relying on dumb network
equipment and its logically centralized smart controller. Networks are indeed the pervasive
infrastructure that connects all devices and smart things, hence they represent the ideal mean for
capillary monitoring, inspection, and enforcement.

https://www.fortinet.com/
https://www.barracuda.com/products/nextgenfirewall_x?L=it
https://www.f5.com/products/big-ip-services
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk101441

Page 12 of 159

Deliverable D1.1

The combination of packet processing in network devices and computing hypervisors allows a great
flexibility in wher e traffic is analysed and inspected, in both physical and virtual environments. This
approach has already been used for many years, collecting flow statistic through protocols as SMTP,
NetFlow, sFlow, IPFIX, and, more recently, OpenFlow [10] . Threat identification by exploiting network
programmability has already been investigated by research papers [11] . The Defence4All plugin for the
OpenDayLight SDN controller is the most popular platform in this context. It monitors packet counters
available in OpenFlow devices to quickly detect anomalous and suspicious conditions and, in case,
diverts the traffic towards an external scrubbing facility for in-depth analysis and mitigation.
Defence4All only works for DoS attacks, and wastes network bandwidth when redirecting the traffic to
an external appliance.

Unfortunately, most of existing approaches are essentially based on static, pre-defined, and inflexible
filtering and detection rules. SDN controllers (e.g., OpenDayLight, Quake, NOX) require the definition of
detailed instructions and/or programs from applications (by using internal APIs or descriptive
languages as YANG [12]), and just translate theÍ ÉÎÔÏ /ÐÅÎ&ÌÏ× ÏÒ ÏÔÈÅÒ ÐÒÏÔÏÃÏÌ ÍÅÓÓÁÇÅÓȢ 4ÈÅ ȰÉÎÔÅÎÔ
ÆÒÁÍÅ×ÏÒËȱ ÉÎ /./3 ÇÏes in the direction of more automation towards real Network-as-a-Service
(NaaS) [13] , but it is still far from a complete and overall abstraction model (it currently only addresses
connectivity).

Recently, the interest has started shifting from stateless to stateful operation in network switches,
which provides far more programming flexibility and efficient processing in the data plane, while
reducing the overhead in the control plane. This would eventually allow more advanced programming
models, well beyond static forwarding rules and flow-level reporting available today, which include
inspection and detection on flows and/or packets, aggregation and even storing capabilities.
OpenState [14] delegates basic state update operations to network switches. This abstraction is rather
powerful, but it only allows the switch to run simple Finite State Machines (FSMs), where transitions
are limited to state changes, and does not include comparisons or complex computations that would be
necessary for detection tasks that compare values against thresholds, which is currently being
developed by the same authors [15] . The OpenState framework is already used for detecting DDoS
attacks by StateSec [16] . In addition to OpenState, other technologies are being developed that process
network packets and I/O events (e.g., FD.io, Snabb switch, IOVisor, XDP, BESS), which may be used to
bridge software-defined networking with threat detection algorithms.

It is worth pointing out that enhanced programmability also brings more dynamicity in running
detection and monitoring tasks. This means that lightweight processing could be used for normal
operation, while reverting to deeper inspection at the early stage of any suspicious anomaly (or upon
signalling from some knowledge-sharing framework), with clear benefits on the overall processing load.
Further, a distributed and capillary architecture, with inspection capability in each network device and
hypervisor, automatically addresses scalability, since the processing resources grow with the system
size. This increases efficiency and boost better performance, especially when attacks are complex to
detect.

Recent estimations say that user applications are the most attractive target for attacks (more than
80% of attempts). The increased security has led to the elaboration of more complex attacks, which
eventually turns into more difficult detection. In addition, the ever-growing number and complexity of
protocols and applications makes their traffic and behaviour increasingly difficult to understand and to
model, which complicates the detection of anomalies. Accordingly, inspection is evolving from simple
memory-less string matching to stateful rules (such as regular expressions). As immediate consequence,
more processing power (hence CPU cycles) are required to check packets and instructions against more
elaborated rules. Therefore in-line detection is likely to overwhelm software-based implementations of
load balancers, firewalls, and intrusion prevention systems, especially in case of large volumetric
attacks [17] . It is therefore necessary to consider extensions or (re-)designs that adopt hardware and
in-kernel acceleration (e.g., GPU, Intel DPDK, FD.io, Snabb switch, IOVisor, XDP, BESS) to build fast data
paths that process packets at nearly line speed.

Page 13 of 159

Deliverable D1.1

Trustworthy of the processed information, events, and knowledge is of paramount importance, since
an inappropriate response may be more damaging than the original attack. Any loss of integrity in the
infrastructural components (i.e., hardware tampering) or control protocols may result in inaccurate,
inappropriate, manipulated, or poisoned context information, which gives a forged situational
awareness and eventually leads to ineffective, late, or even counterproductive reactions.

Encryption and integrity services are almost always available in control channels, as well as user
authentication and access control, but no certification of origin and time of information is usually
available. Authentication, authorization, and access control are already present in SDN controllers (e.g.,
OpenDayLight uses a token-based mechanism). However, trustworthy and integrity of the collected
information are also fundamental requirements for maintaining historical evidence with legal validity,
to be used for example in forensics investigations. At the same time, privacy issues must be tackled in
order to not disclose any personal and sensible information without explicit consent, even to technical
and management staff, apart in case of criminal investigation [18] . Specific challenges include collecting
and conserving events and traffic patterns in a confidential way, anonymizing data before analyses, and
making them accessible in clear form only in case of legally authorized investigation [19] . Cyber-security
frameworks have to guarantee the origin and integrity of security events, as well as the integrity of their
sources, to keep relevant information in safe, trusted, and secure storage, and to make data available
without disclosing sensitive information [20] . Relevant mechanisms include timestamping, symmetric
and public key cryptography, PKI infrastructures, anonymization and pseudonymization, digital signing,
message integrity codes and hashing functions. One possible solution is the definition of security
middleware, which acts as common substrate for all virtual and physical services. In addition, the
possible evolution of homomorphic encryption [21] [22] may represent the ground-breaking factor to
foster privacy-preserving computation schemes still inconceivable right now.

The progressive introduction of more programmable devices brings more flexibility and dynamicity
in processing, but also requires a control plane that exposes device capability, and an orchestration
plane that automates the process of on-the-fly building and deploying the configuration/code. In the
transition from centralized to distributed architectures for cyber-security systems, it is indisputable that
orchestration will play a crucial role in shaping the behaviour of the capillary programmable
infrastructure, i.e., to delegate filtering and pre-processing tasks to programmable resources, including
network switches, hypervisors, and smart things, with tight coordination with the deployment and life-
time management of software. Through orchestration, the granularity, detail, and periodicity of
collected information can be tuned dynamically according to specific needs (e.g., increase granularity in
a specific area where anomalies have been detected).

The transition to more programmable infrastructures does not only increase their flexibility, but also
widens the attack surface [23] . Malicious, wrong, or inaccurate code/configuration may be exploited for both
passive and active attacks. In the context of software-defined networking, the importance of formal
verification for preventing security violations and other unwanted behaviours of the network (such as
forwarding loops) has been widely recognized in the scientific community. Several formal verification
techniques have been developed targeting both SDN functionalities (most notably OpenFlow rules [24] [25])
and virtual graphs of network functions [26, 27, 28, 29]. A limitation of all these techniques is that they are
not integrated into the orchestration process, but they act either before it (on the user-specified service
graph) or as a post-processing step after orchestration. This is not the best solution. An early check, in fact,
may miss security problems introduced afterwards, while with a later check, if errors are detected by the
verifier, service deployment fails because the orchestrator does not have clues about how to fix the errors or
the orchestrator has to iterate through the many possible solutions, which is clearly inefficient.

Advances are needed for the development of formal approaches that, while providing final assurance
levels similar to the ones of the state-of-the-art formal verification techniques, are incorporated into the
secure orchestration process, which in this way produces network configurations that, once deployed
into the underlying infrastructure, are formally guaranteed to satisfy the required security policies. In
fact, the problem of how to ensure the correctness of service orchestrators has already been recognized

Page 14 of 159

Deliverable D1.1

as a critical one in security-critical cloud computing environments, so that the idea of formally verifying
orchestration procedures has been recently proposed (e.g., [30, 31, 32]), for verifying cloud-related
policies (e.g., verify that payment procedures are properly designed). Further extensions are needed to
address similar concerns about orchestrator correctness, but also considering the edge and fog
environments.

The dynamicity, sophistication, and speed of attacks require autonomous response to provide timely
and effective countermeasures. Sharing and correlating events and anomalies within the same and
among different domains is also essential in order to (even proactively) anticipate any emerging or
upcoming threat already (partially) detected somewhere. In-deep analytics are required to detect and
identify threats from elementary and apparently uncorrelated events. Some tools are already available
to this purpose (e.g., the ECOSSIAN platform and the Caesair model [33]).

Pervasive and fine-grained monitoring of ICT installations will produce an impressive amount of data,
even if programmability is used to tune the deep of inspection according to the actual need. Big data and
machine learning capabilities are required to extract relevant knowledge from the cluttered flow of
information, by correlating data from pervasive data sources. The challenge is to add predictive and
proactive capabilities to existing security tools and systems, in order to prevent attacks by analyzing the
environment, rather than merely react in case of compromise.

The whole process can therefore be split into three tasks:

¶ Collect and aggregate data from a multiplicity of sources, including all relevant inputs
(programmability).

¶ Correlate inputs in space and time dimension, even in different administrative domains
(correlation), in order to promptly detect, classify, and predict multi-vector and interdisciplinary
cyber-attacks. The challenge is the real-time elaboration of massive events from a huge number
of sources, while maintaining several properties such as scalability, autonomy, usability, fault
tolerance, and responsiveness.

¶ Build the global security assessment of the overall system, including identification of threats,
attacks, vulnerabilities (evaluation).

Existing algorithms already make use of flow-level information for network volume anomaly
detection [34] , though this only represents the crumbs of what may be available tomorrow. New
algorithms for vulnerability analysis and threat detection may be based on the ideas of the Attack
Graphs [35] , Attack Surface analysis [36] , Kill Chain definitions [37] and Attack trees models [38] with
the support of the deep learning techniques, Petri nets [39] , and game theory models [40] . Correlation
should also include automatic selection of the algorithms for the analysis of the threats based on the
threat potential negative impact, both environment-dependent and environment-independent.

Once the proper knowledge has been built by correlating and understanding data and events, it must
be used in the most appropriate manner for reaction and mitigation. Situation awareness must be
represented to security staff, must feed smart reaction tools (including service orchestrators), and must
be shared in order to boost synergic and coordinated response.

Next-generation visualization tools and interfaces shall include concrete models and specifications
for an innovative approach in the field of cyber-security, being able to capture novel aspects entailed by
virtualization paradigms (including fog architectures and the IoT), also bearing in mind the need for
distributed, pervasive and capillary monitoring techniques. This means that situational awareness shall
be related to the system topology and composition through proper data visualization, with clear
indication of the main vulnerabilities, flaws, threats, and their position [31] .

Existing tools for visualization should be improved with real-time cross-domain information, in order
to reach a better response time and to reach the scope of situational awareness. Visualizations must be
able to provide enough information to prepare effective response strategies but shall also avoid to reveal
sensitive information about other domains (e.g., vulnerabilities, lack of proper defense tools, undergoing

Page 15 of 159

Deliverable D1.1

attacks, etc.), as well as include proper identification and verification of credentials of authorized users,
to avoid propagating useful information to attackers.

The high degree of interconnectedness of communication infrastructures in practice exposes every
information system to the same threats. On the other hand, the growing complexity and organization of
cyber-attacks, which are often carried out simultaneously against different targets, are drastically
reducing the time to learn new threats and to disseminate relevant information. Collective sharing of
data, events, and relevant security information looks the only viable way to build large-scale situational
awareness and to protect critical infrastruc tures. Both technical (e.g., data semantics and
communication interfaces) and organizational aspects (e.g., privacy, ownership, confidentiality) should
be considered in the design of effective security information sharing platforms [41] .

3.5 Towards integrated and pervasive situational awareness

New architectures and usage models, which leverage virtualization paradigms and the Internet of
Things (IoT), are now revealing the substantial inadequacy of legacy security appliances to effectively
protect distributed and heterogeneous systems (including cloud, edge, and fog installations) against
cyber-threats. As a matter of fact, the prevalent paradigm ÉÎ ÅÎÔÅÒÐÒÉÓÅ ÓÅÃÕÒÉÔÙ ÉÓ ÓÔÉÌÌ ÔÈÅ ȰÓÅÃÕÒÉÔÙ
ÐÅÒÉÍÅÔÅÒȱ ÍÏÄÅÌȟ ×ÈÉÃÈ ÁÓÓÕÍÅÓ ÓÁÆÅ ÉÓÏÌÁÔÉÏÎ ÏÆ)#4 ÁÓÓÅÔÓ ÂÙ ÐÈÙÓÉÃÁÌ ÏÒ ÖÉÒÔÕÁÌ ÎÅÔ×ÏÒË
segmentation, hence concentrating protection at the perimeter only. Running virtual machines in public
cloud/edge installations, as well as integration with third partyȭs devices and smart things, blur the
boundary between public zones and private domains, hence making hard to apply the security
perimeter model in a trustworthy and effective way. Since valuable ICT assets cannot be easily enclosed
within a trusted physical sandbox any more, there is an increasing need for a new generation of
pervasive and capillary cyber-security paradigms over distributed, multi-domain, and geographically-
scattered systems.

The predominant interspersion of lonely valuable resources with unsafe computing and
communication infrastructures makes the application of the security perimeter at each site ineffective,
because of the overhead to run complex agents in end devices, especially in case of resource-constrained
ȰÔÈÉÎÇÓȱȢ)Î ÁÄÄÉÔÉÏÎȟ ÔÈÅ ÇÒÏ×ÉÎÇ ÃÏÍÐÌÅØÉÔÙ ÏÆ ÃÙÂÅÒ-attacks, often based on multi-vector approaches,
are urgently demanding more correlation in space and time of (apparently) independent events and
logs, and more coordination among different security applications.

We argue that, in relation to network threats, most of the rigidity of current security paradigms comes
from two main factors: i) the need for physical isolation of enterpriseȭs assets from the outside world,
and ii) the presence of multiple standalone appliances placed at exchange points, each dealing with
specific security aspects (e.g., firewalling, intrusion detection/prevention, virtual private networking,
antivirus, deep packet inspection), as pictorially depicted in Figure 1. Because of this typical
fragmentation, each appliance has only a partial view of the whole context, and enforcement of security
policies may also be limited in effectiveness.

To effectively tackle multi -vector attacks, a broad range of data from heterogeneous sources should
be collected, fused, and processed with fine granularity. The likelihood of detection increases with the
deep of knowledge, so raw data would be better than distilled knowledge, but management of large
amounts of information may be overwhelming. In this respect, the evolution of the legacy cyber-security
paradigms towards more integrated and collaborative frameworks is desirable, where a common and
pervasive substrate feeds several detection algorithms in a fine-grained programmable way. At the
conceptual level, the most disruptive innovation should come by going beyond the traditional
ȰverticaliÚÁÔÉÏÎȱ, where multiple discrete appliances cope with specific security aspects (e.g., firewalling,
intrusion detection/prevention, anomaly detection), in favor of horizontally-layered architectures,
which decouple distributed context monitoring from (logically) centralized detection logic, as shown in
Figure 1. This visionary perspective somehow aligns to the same evolutionary path already undertaken
by software-defined networking. Such evolution would be properly addressed by a multi-tier

Page 16 of 159

Deliverable D1.1

architecture that decouples a pervasive and shared context fabric, where the environment is monitored
and security actions may be enforced in a capillary way, from centralized business logic, where detection
and mitigation algorithms are implemented and leverage big data and other advanced techniques. In
addition, a presentation layer facilitates the interaction with users and other security systems.

Figure 1. The complexity and multi -vector nature of recent cyber -security threats require a transition
from current narrow -scope silos to a more in tegrated multi -vendor layered and open framework.

A more technical conceptual view of an innovative cybersecurity framework is represented in Figure 2.
It shows specific operations and information present at the three layers identified above; the left side
concerns data collection and fusion to build wide situational awareness through identification of cyber
threats and attacks, while the right side shows the translation of remediation strategies and
countermeasures into proper local configurations.

Figure 2. Conceptual information workflow for a distributed cyber -security framework.

Page 17 of 159

Deliverable D1.1

3.5.1 Context and enforcement

%ÆÆÉÃÉÅÎÃÙ ÁÎÄ ÉÎÔÅÒÏÐÅÒÁÂÉÌÉÔÙ ÂÕÉÌÄ ÏÎ Á ÃÏÍÍÏÎ ÃÏÎÔÅØÔ ȰÆÁÂÒÉÃȱ ÔÈÁÔ ÐÒÏÖÉÄÅÓ Á Õniform substrate
to collect security events, data, measurements and logs from heterogeneous sources, scattered over a
mix of enterprise, cloud, edge, and fog installations.

A single and unified layer for data collection results in far more efficiency, by avoiding duplication of
the same analysis and inspection tasks for different applications. Conceptually, the context fabric might
seem the same concept as Security Information and Event Management (SIEM), which collects events
and logs for centralized analysis and correlation. However, as the same name implies, the context fabric
entails a capillary and thick monitoring texture for detecting and collecting security-related information,
encompassing network measurements, system calls, daemon and application logs, and security events
from heterogeneous sources in (maybe virtual) networking and computing devices, while tuning the
detail level according to the current situation and risk.

It exposes advanced programming interfaces, well beyond the flow-level reporting already available
today for anomaly detection (e.g., NetFlow, sFlow, IPFIX), to configure the type and depth of inspection,
pre-processes information, and provides Ȭrefined contextȭ instead of raw data that might flood the
network and the detection algorithms. OpenFlow [42] and NetConf [43] interfaces are already available
both in open-source (e.g., Open vSwitch) and commercial network devices; though supported
operations are just limited to filtering and statistical reporting, the interest in stateful processing [14]
[16] is paving the road for a richer and more flexible set of processing capabilities, which promises to
push much more intelligence to network devices. Other kinds of interfaces would be required to extend
the framework to behavioural analysis, access control, and other relevant tasks for a more general
cyber-security framework.

Consequently, the context fabric entails a rich set of traffic filtering, packet and behaviour inspection,
processing, aggregating, and, likely, storage functions that are delegated to specific domains for
performance and privacy matters. Such functions will no more rely on dedicated hardware appliances
or virtual software functions; rather, the challenge is to build on the growing availability of flexible and
programmable data planes in network devices, operating systems, and hypervisors. The context fabric
may be present in network devices, in hypervisors, in a virtualization containers, or directly into the
networking stack of an operating system, so to cope the different virtualization options and deployment
scenarios. Hardware and software acceleration for fast packet processing is highly desirable to create
fast paths inside switching and routing devices, virtual functions, hypervisors. To this purpose, the
implementation of the programmable agent may build on technologies like Intel DPDK, FD.io, Snabb
switch, IOVisor, BESS.

Available computing and networking programmable infrastructures often provide both inspection
and enforcement capabilities, so that a reduced set of technologies must be deployed to implement fully
reactive systems. Enforcement must include packet filtering and redirection but should also cope with
typical orchestration functions like starting, stopping, replacing, or migrating virtual functions so to
remediate to security breaches and violations.

3.5.2 Detection and policies

!ÂÏÖÅ ÔÈÅ ÓÈÁÒÅÄ ȰÃÏÎÔÅØÔȱȟ ÂÕÓÉÎÅÓÓ ÌÏÇÉÃ ÉÎÃÌÕÄÅÓ ÄÉÆÆÅÒÅÎÔ ÁÌÇÏÒÉÔÈÍÓ ÔÈÁÔ ÉÍÐÌÅÍÅÎÔ ÄÉÆÆÅÒÅÎÔ
security functions: identification and prevention of attacks (intrusion, DoS, eavesdropping, replication,
etc.), identification of vulnerabilities, new threats, and anomalies. This gives better opportunity to merge
and correlate data from different domains, as well as analysis from different applications. A business
logic layer allows diversification of security services as well as vendors, under a shared and open
framework that avoid technological and commercial lock-ins.

From a conceptual point of view, virtual services constitute a hackable network of services; thus, a
continuous internal audit of their security is required. The purpose is to improve detection (and even

Page 18 of 159

Deliverable D1.1

prediction) of the most complex multi -vector and interdisciplinary cyber-attacks. In this respect, the
challenge is the definition of innovative algorithms that define which metrics are needed for each
monitored point and correlate them in both time and space dimensions. This represents a substantial
improvement over existing detection and prevention algorithms, which currently only work with a
limited set of information [34] [44] . Detection should also support effectively signature- and rule-based
detection similarly to existing IPS/IDS tools [44, 45]; both static and dynamic analysis of code are
required to protect virtual services during their lifecycle. Different techniques may be used for these
purposes: regression analysis, predictive and prescriptive analytics, data mining and machine learning.
Obviously, a larger base of data and events would increase the processing burden, but this should not
be a problem, since the control plane is outside the service graph and could run in dedicated
infrastructures with big data techniques. The definition of advanced algorithms will eventually result in
more computation complexity than today but will also add predictive and proactive capabilities to
existing security tools and systems. The increased complexity will require big data and machine learning
capabilities to effectively extract knowledge in nearly real-time. New algorithms must therefore be
properly designed to fit parallel and elastic computation provided by such paradigms, in order to be
effectively orchestrated by high-level components.

The decoupling between the context and the detection algorithms represents a major difference with
respect to current practice and requires common models to gather data from heterogeneous sources;
data harmonization is necessary to provide common formats and syntax for data coming from different
domains and (possible) different controllers. In addition, the preliminary challenge is to understand
which tasks should be offloaded locally and which tasks must be performed centrally. In general, the
target should be to run detection algorithms on high-performance, reliable, and protected
infrastructures (e.g., private cloud installations), while offloading monitoring, inspection, and filtering
tasks to local resources in the cloud, the edge, and the fog. We remark that detection algorithms must be
in part re-engineered to fit the distributed structure and deployment model of the specific orchestrator.
However, we think that this effort could only be undertaken after the main framework has been outlined,
and the design requirements are more clearly defined.

For a large number of well-known attacks (e.g., DoS, port scan), mitigation consists in standard
actions, so response may be easily automated by a set of security policies. Security policies may be
expressed in terms of very simple Ȭif-then-elseȭ clauses, making the execution of specific actions (e.g.,
traffic shaping, traffic redirection, etc.) contingent upon occurrence of specific events (e.g.,
measurements over given threshold).

3.5.3 Awareness and reaction

Finally, the presentation layer concerns the representation and usage of situational awareness built
by underlying security applications. The human interface is the interactive tool to draw the current
cyber-security picture and to enable quick and intuitive response to attacks. It provides intuitive and
easily understandable situational awareness to effectively support the decision process, by proper
representation of the risk of possible attacks and the identification of threats and weaknesses (also
including origin, positioning, dangerousness, replicability, etc.), and by enabling definition of custom
reaction strategies in case of new and unknown threats.

Specific challenges include data and method visualization (e.g., to pinpoint the actual position of
attacks and threats in the network topology, to point out the possible correlation between events in
different domains), and decision support (e.g., to suggest remediation and countermeasures, to define
automatic response to well-known attacks). Also, the presentation layer should provide seamless
integration with CERT networks to share information about new threats and attacks among different
administrative domains (e.g., with STIX), in order to facilitate continuous update of the attack data base
and the elaboration of common reaction and mitigation strategies [41] . Integration with existing risk
assessment and management tools is also desired, so to automate most procedures that are currently

Page 19 of 159

Deliverable D1.1

still carried out manually. This will ultimately speed up the sharing and learning process, reducing
reaction times and improving the overall resistance and resilience.

Solutions may rely on multi-layer software architectures and REST-based APIs for accessing threats
and attacks databases by multiple devices, flexible graphical layout definition by templates and
stylesheets to adapt the representation to heterogeneous devices and platforms, event-driven
publish/subscription mechanisms for real-time notification of threats, anomalies, attacks.

Cymerius, a visualization platform from Airbus, has already demonstrated the power and usefulness
of threat visualization [33] . However, further research and innovation is required to manage complex
multi -vector and multi-domain attacks and to integrate with national and international cyber-security
response frameworks.

Presentation entails interaction with humans, to trigger manual reaction in case of complex attacks,
or just to set security policies to automatically react to simpler and well-known ones. Semi-automated
response is another option today, leveraging orchestration tools that manage life-cycle operations for
complex systems and business chains, especially for virtual services.

Orchestration has been a hot topic in cloud/NFV environments for many years, hence different
solutions and technologies are already available [46, 47, 48, 49] They mainly differ in the application
models (which may be model-driven or data-driven) and management paradigms (which can be
centralized or based on local managers), mostly depending on the optimization target and the specific
environment (cloud, edge, NFV). A specific task for the orchestrator is automation and abstraction of the
ÕÎÄÅÒÌÙÉÎÇ ÃÏÎÆÉÇÕÒÁÔÉÏÎȠ ÉÎ ÔÈÉÓ ÒÅÓÐÅÃÔȟ ÁÎ ȰÉÎÔÅÎÔ ÆÒÁÍÅ×ÏÒËȱ ×ÏÕÌÄ ÔÒÁÎÓÌÁÔÅ ÈÉÇh-level description
of monitoring and analysis information into specific instructions; this can be viewed as a sort of
Monitoring/Inspection -as-a-Service. A policy framework represents the simplest and most immediate
implementation, already available in many architectures [49, 50].

Finally, the user interface shall include tight access control to information to avoid attackers to gain
visibility over security breaches and vulnerabilities.

3.5.4 Forensics and legal validity

Even the most reliable system may occasionally be compromised; in this case, it is important to
investigate the cause to identify additional protection measures. In this respect, a critical issue is the
legal validity of the extracted data to prosecute attackers. Common challenges in this area include: i)
storing trusted evidence, ii) respecting the privacy of users when acquiring and managing evidence, iii)
preserving the chain of custody of the evidence. We remark that in the proposed framework the problem
is not the same as the definition of Cloud forensics [50, 51], since investigation in our case is carried out
by the service owner and not by the cloud provider.

A certification process should be responsible for origin, timestamping, digital signing, integrity of
relevant information that is used for security audits and legal interception; the solution should be able
to capture enough information to trace security attacks in a reliable manner and to interpret the data
post-factum. A legal repository should be responsible for secure and trusted storage of data,
information, and events (security audit trails) for successive off-line analysis, cyber-crime investigation,
and evidence in court. Key features in this case is trustworthiness, availability, integrity, resilience,
resistance to attacks, and scalability, in order to prevent alteration or losses of data in case of attack.

The repository should be based on storage solutions specifically designed and implemented to comply
with requirements for lawful applications. We believe existing virtual file systems for distributed
storage of information (e.g., Ceph or Hadoop), which split information among different storage nodes,
may be able to achieve the required reliability, security, availability, and scalability features.

Page 20 of 159

Deliverable D1.1

3.6 The ASTRID concept

Taking into consideration the main technological gaps and current evolutionary trends, the main
objective for the ASTRID project is i) to provide better awareness about cyber-security threats of
virtualised services, referred to each single component (i.e., each specific application) as well as the
service as a whole (i.e., the entire service graph), and ii) to facilitate (possibly automate) the detection
and reaction to sophisticated cyber-attacks. Specific challenge will be the ability to detect vulnerabilities,
threats and attacks not only from the canonical input/output channel of the services, but also internally
to the service.

ASTRID explicitly addresses the following security concerns that are often underestimated in current
approaches [52]:

¶ placement and configuration of the security appliances become part of service graph design, so
often dealt with by people with no specific skills and experience in cybersecurity aspects;

¶ security and isolation of the internal (virtual) network rely on third -party segmentation mechanisms,
which means that potential vulnerabilities, breaches, and threats of the virtualised resources
(including software containers and network links) are not visible to owners of the virtual services;

¶ security appliances may increase the attack surface: attacks can target any functions of the
service, including NAT, firewalls, IPS/IDS, hence vanishing the protection and leading to a
misleading perception of security;

¶ security appliances as antivirus and intrusion detection must be replicated in each virtual
function of the service graph, hence yielding excessive overhead and computing requirements;

¶ legal investigation is usually difficult, because there are no standard mechanisms to inspect
exchanged traffic and monitors events and logs.

Riding the wave of the cloud paradigm, a major trend already identified in Section 3.4 is the transition
from infrastructure -centric (Figure 4.a) to service-centric frameworks (Figure 4.b), which gives service
providers better situational awareness about their deployed services. Indeed, virtual security functions
ÃÁÎ ÂÅ ÅÁÓÉÌÙ ȰÐÌÕÇÇÅÄȱ ÉÎÔÏ ÓÅÒÖÉÃÅ ÇÒÁÐÈÓ ×ÈÅÎ ÔÈÅ)Îfrastructure-as-a-Service model is used,
leveraging the large correspondence with physical infrastructures that is present in this case. Software
orchestration facilitates the automatic deployment of security appliances, but their placement in the
service graph is usually defined at design time by people that might not have the right security skills. In
addition, application to other cloud models is not straightforward, especially when some software
components are shared among multiple tenants (i.e., Service-as-a-Service), they should run on resource-
constrained devices (i.e., the fog or IoT), or the service topology changes over time (e.g., for scaling,
discovery of new components, failures). Given the lack of standard APIs and control interfaces, data
collection, harmonization, and correlation may be very difficult. ASTRID aims at further improving this
evolution; the main concept is the disaggregation of security appliances into a set of programmable
inspection elements that feed a (logically) centralized detection logic (Figure 4.c).

Figure 3. The ASTRID concept pursues a transition from infrastructure -centric to service -centric
cybersecurity framework s.

Page 21 of 159

Deliverable D1.1

The general approach of ASTRID is tight integration of security aspects in the orchestration process.
The distinctive characteristic of ASTRID with respect to other proposals is that no explicit additional
instances of security appliances are added to the service graph. Instead of overloading the graph with
complex and sophisticated threat detection capabilities, ASTRID will only perform lightweight
monitoring and inspection tasks in service graphs and their execution environments, which feed
detection algorithms placed outside the graph design, as part of a powerful and overarching awareness
logic, as pictorially shown in Figure 4. Hence, orchestration is no more responsible to deploy security
appliances (Figure 4.a), rather to programmatically deploy and configure a set of distributed agents
and/or hooks with inspection and enforcement capabilities, and to connect them with a (logically)
centralized detection logic (Figure 4.b).

Figure 4. ASTRID concept.

The main enabler for ASTRID is programmability , i.e., the capability to change not only inspection
parameters (as IP addresses, TCP/UDP ports, application logs) but also the same processes of inspection
and aggregation. That means the ASTRID framework will not be constrained by design to a specific set
of protocols but will be able to inspect new headers and protocols as defined by the detection logic. The
ambition is therefore a very generic inspection and monitoring framework, able to collect
heterogeneous security data from multiple sources.

A conceptual representation of ASTRID is shown in
Figure 5Ȣ 4ÈÅ Ȱ3ÅÃÕÒÉÔÙ -ÏÄÅÌȱ ÐÒÏÖÉÄÅÓ Á ÃÏÍÍÏÎ
abstraction for the underlying programmable hooks. It
uses specific semantics to describe programming
models (e.g., programming languages, availability of
compilers, interpreters, or virtual machines) and
security-related capabilities (e.g., logging, event
report ing, filtering, deep packet inspection, system call
interception), as well as provides a common interface for
their configuration.

Policies describe in an abstract form various life-cycle
management actions; for instance, types of events that
should be collected, anomalies that should be reported,
actions that should be undertaken upon detection of
potential attacks, etc. Policies may be encoded in high-
level descriptive languages (e.g., XML, JSON) for
requesting specific orchestration services (e.g., setting a
packet filter for a given traffic flow, replacing a buggy or

Figure 5. ASTRID multi-tier architecture.

Page 22 of 159

Deliverable D1.1

misbehaving function, triggering packet or software inspection). They are agnostic of the underlying
data planes, so that they can be used with different (even heterogeneous) programming technologies.

Relying on a common and homogeneous substrate for inspection and monitoring will facilitate the
correlation of security data in both the time and space dimension. Algorithms can therefore consist of
typical functions (i.e., firewall, IDS/IPS, antivirus, Application-Level Gateway), but can also realize new
forms of detection based on correlation of data from different subsystems (disk, network, memory, I/O),
leveraging machine learning and other forms of artificial intelligence.

Clearly, the disruptive ASTRID concept does not only bring important benefits, but also poses new
technical and procedural challenges . As a matter of fact, the need to collect data may overwhelm the
network; in addition, the confidentiality and integrity of such information is of paramount importance,
especially to support legal and forensics investigation. In this respect, the ASTRID concept entails a more
complex framework than the general architecture outlined so far. At the proposal stage, three main
macroblocks and a number of logical functions were already identified, as shown in Figure 6.

Figure 6. ASTRID framework .

The three macroblocks are [53] :

¶ service engineering, concerning the development and abstraction layers for both software
components (micro-services, virtual functions) and service graphs;

¶ service management, dealing with secure deployment and life-cycle management of service
graphs;

¶ situational awareness, responsible for detecting threats and certifying data for security audits and
court investigations.

Service engineering is based on the usage of a Context Model. Indeed, a service graph is a high-level
description of the service, which must then be translated in a proper configuration of the underlying
virtualization environment and operating conditions. The Context Model is just an abstract
representation of the possible environments and conditions, including information about dependencies
among components (e.g., web application that needs a database for storage), requirements on
computing/networking/storage resources (e.g., number of CPUs, RAM, bandwidth), underloading or
overloading conditions, failure conditions, etc. Orchestration makes use of this information for
deployment and lifecycle management, hence adapting the service and its components to the changing
context. These processes are usually based on the execution of specific hooks for management of single

Page 23 of 159

Deliverable D1.1

components and the whole graph. Hooks are often provided as scripts, to install and configure the
system during deployment, to start/stop/restart the service, to clone the service, to scale the service, to
react to failures, to de-provision the service and so on. The definition of behavioural rules for
orchestration is typically done by Policies, which are described by a condition/action pattern. Policies
are specified separately to the system implementation to allow them to be easily modified without
altering the system. ASTRID makes use of policies to shape the system behaviour to the evolving context.

Secure management of service graphs entails both authentication and encrypted channels for
interacting with the service components. Thus, access to the security context is mediated by ABAC
(attribute Based Access Control) and ABEC (attribute Based Encryption Control). It also contains an IdM
(Identity Management) component and a PKI infrastructure (rooted at a trusted and public Certification
Authority). Secure deployment also entails selection of trusted services (i.e., which have been previously
verified by static code analyses and certified to be safe), hence a TSL (Trusted Service List) component
is present.

Situational awareness includes all the components to collect, distribute, and process knowledge from
the individual components of the service graph. The Context Broker is responsible for collecting context
information by a Pub/Sub paradigm; it feeds other engines that take decision based on the current
security context. Threat detection process events, data, logs from individual components and identifies
threats and attacks. It makes use of Complex Event Processing for carrying out detection tasks (rule-
based, big-data, machine learning). Output from the threat detection logic is distributed to several
processes:

¶ the user interface, to provide proper visual representation of the current situation to the service
provider, and to assist him in taking decision for remediation actions and countermeasures;

¶ the certification process, which is responsible for origin, timestamping, digital signing, integrity
of relevant information that is used for security audits and legal interception; the ASTRID
solution is able to capture enough information to be able to trace security attacks in a reliable
manner and to interpret the data post-factum;

¶ the secure repository, which conserves data with legal validity (security audit trails) for forensics
investigation that is initiated after the threat or attack has been identified.

For what concerns threat detection, the target is protection from both software vulnerabilities and
network threats, hence involving a mix of source and run-time code analysis, formal verification,
network analytics, and packet filtering techniques Specific issues to be tackled:

¶ Guarantee that the software does exactly what is supposed to do.
¶ Guarantee that the software has not been tampered, either voluntarily or through a successful

attack.
¶ Guarantee that traffic streams flowing in, out, and across the service are (i) clean, (ii) do not

contain anomalies or suspicious patterns, and (iii) are forwarded according the desired security
policies.

3.7 Application scenarios

Beyond the mere concept, it is necessary to identify tangible use cases for the ASTRID technology. In
this Section, some envisioned scenarios are identified and described, which represent potential business
opportunities for the ASTRID Consortium. In this respect, they will be used to identify the set of
technical, functional, and procedural requirements for the design and implementation of the ASTRID
technology. Most of the described scenarios will then be demonstrated in the two ASTRID Use Cases, as
described in the following D4.1.

Page 24 of 159

Deliverable D1.1

A common template is used for all application scenario, which allows a systematic presentation. An
initial brief description includes the following elements:

¶ Name: short name of the referenced scenario.
¶ Objective : the main objective that should be achieved in the referenced scenario.
¶ Scenario : the description of the specific problem to be solved, including main motivations

(technical and/or legal) and challenges.
¶ Business cases: envisioned market segments for commercial exploitation. The description is

deliberately limited to a very short reference, because the topic will be elaborated in more details
in D5.5/5.8.

¶ ASTRID stakeholders : The Consortium partners that are mostly interested in the referenced
scenario, either for scientific or commercial exploitation.

In the operation section, two approaches to solve the problem are described:

¶ Current practice : a short description of available tools and methodologies that are already used
in the referenced scenario, together with their weakness and limitations.

¶ ASTRID practice: an indicative description of how the ASTRID framework would be used to
solve the same problem, with explicit indication of how high-level configuration and policies will
be translated in low-level operations.

Finally, main innovation and benefits brought by the ASTRID approach are briefly summarized; an
indication is also given about the main technical/procedural challenges to be solved by the Project.

All scenarios are characterized by an intrinsic rigidity of current practice in the configuration of
security properties, as well as the need for manual operations and high-skilled personnel. ASTRID
improves the usability, reliability, and effectiveness of security operation, by bringing more automation
and leveraging programmability of the underlying infrastructure.

3.7.1 Situation al awareness

Description

Name Situational awareness for virtualized services.

Objective
Detection of intrusions and advanced persistent threats through correlation of
heterogeneous security context.

Scenario

A cloud application or an NFV service is designed as service graph and ready to be
deployed by an orchestrator. Virtualization infrastructures partially change the
typical threat models of physical installations. Indeed, tampering is a minor issue in
this case, but de-coupling software from the underlying shared infrastructure raises
new security concerns about the mutual trustworthiness and the potential threats
between those two layers. Cloud/NFV applications are vulnerable to network attacks
from the Internet (intrusion, eavesdropping, redirection, $Ï3ȟ ȣɊȢ 4ÈÅÓÅ
vulnerabilities can be largely mitigated by well-known security appliances, but the
latter definitively increase the attack surface, as demonstrated by the number of
vulnerabilities reported to NIST for security applications from main vendors since
2016 [54] .

Virtual services cannot take full trustworthiness of internal resources for granted:
indeed, the cloud paradigm raises many security concerns due to the hypervisor layer,
outsourcing, and multi-tenancy [1] . As a matter of fact, the attack surface is increased
by the larger number of components: guest environments (virtual machines), host
operating systems (servers), hypervisors, management interface, shared storage and
networks. Sharing a common infrastructure has the unpleasant side effect that an

Page 25 of 159

Deliverable D1.1

attack to the infrastructure affects many services and tenants (e.g., DoS on shared
physical networks). Tenant isolation should provide independent and secure
execution sandboxes, leveraging technologies as hypervisors, network virtualization,
and virtual storage. However, the shared infrastructure widens the class of local
adversaries, also including other tenants and the infrastructure providers, raising new
attack models (grey boxes, involving tenants and the cloud providers) in addition to
mainstream white (employees) and black boxes (external attackers).

Timely detection of attacks is today more difficult than ever. More than 80% of all new
malware and intrusion attempts are exploiting weaknesses in applications, as
opposed to weaknesses in networking components and services, hence rules have
evolved from memoryless simple string matching to stateful automata (such as
regular expressions). Also, the increase in the complexity of protocols makes
modelling their normal behaviour increasingly difficult; as a result, more computing
cycles per packet are required for either checking against more elaborate rules or
trying to detect sophisticated anomalous behaviours. As a matter of fact, basic in-line
DDoS detection capabilities of network devices such as load balancers, firewalls or
intrusion prevention systems may have once provided acceptable detection when
attacks were smaller but complex volumetric attacks, leveraging on the weak security
posture and proliferation of IoT devices, can easily overwhelm these devices since
they utilize memory-intensive stateful examination methods [55] . Stealth attacks are
now becoming the new norm to circumvent legacy security appliances. Sophisticated,
targeted, and persistent cyber-attacks, collectively indicated as Advanced Persistent
Threats (APT) [56] are mostly complex and generally involve multiple stages that
span over a long period of time. Hence, they occur along both spatial and temporal
dimensions. Spatial dimension . Typical APT begin by scanning the target system to
make an inventory of public resources and identify possible attack vectors (web sites,
emails, DNS, etc.). A number of complementary actions are then initiated to gain
access, including social engineering and phishing, internal port scanning, malware
injections, and so on. All these actions target different subsystems (e.g., public web
servers, DNS, users, internal networks, hosts); when taken alone, they might be
confused with legal operations by standalone security appliances. Temporal
dimension . The execution of the different stages may take days, weeks, or even
months. For example, fraudulent emails might be sent for days or weeks before a rash
or careless user opens the embedded links. Again, an installed malware might be left
snooping for days before starting to collect data. It is therefore challenging for any
standalone security appliances to store long historical traces, and to correlate events
that may have happened weeks or months ago.

Business
cases

¶ Situational awareness for cloud services.
¶ Situational awareness for NFV services and Service Function Chains.
¶ Situational awareness for cyber-physical systems.
¶ Integration with existing risk management tools.

ASTRID
stakeholders

UBITECH, SURREY, AGE, POLITO, CNIT, TUB, DTU

Operation

Current
practice

Most cloud management software only provides firewall services, while other security
services must be implemented by software versions of legacy security appliances
(Intrusion Prevention/Detection Systems, Firewalls, Antivirus, Network Access
Control, etc.). Many vendors of security appliances ship integrated solutions for cloud

Page 26 of 159

Deliverable D1.1

protection; they often consist of a centralized management and analysis dashboard
and many agents that implement conventional security services. These solutions are
usually complex to deploy and lead to vendor lock-in.

Leveraging novel software orchestration paradigms, security appliances can be
integrated in service graph design. This approach usually brings a large overhead on
service graph execution: virtual security appliances cannot exploit hardware
acceleration, require more resources (CPU, memory) and slow down virtual machines,
deploy additional software instances (which increases the cost), and require tight
integration between service designers and security staff (which is not always simple
to achieve in current development processes). Eventually, they are seldom used and
the overall service usually results less secure and more prone to incidents than their
physical deployments [44] . Additionally, these components are built in the classic
fashion, protecting the system only against outside attacks, while most of the cloud
attacks are now done through the compromising of the network functions themselves
using tenant networks running in parallel with the compromised system.

ASTRID
practice

Service developers design their service graphs without caring about security
appliances. Indeed, they are only required to enable the ASTRID framework and
provide high-level indication of what security services are required. Once the ASTRID
framework is enabled, the service graph is enriched with the necessary functions and
hooks, and the graph is shared with the security staff.

Security is largely automated by the orchestration process, which adds all required
functionalities and performs configurations before deployment or as part of life-cycle
management operations. The ASTRID dashboard provides an easy and intuitive mean
to select security features from a list (which may include intrusion detection, APT
detection, DoS mitigation, DNS attacks, firewalling). Each detection service uses a
default detection algorithm, but additional properties may be present to select among
alternative algorithms. Though it is possible to select all available detection features,
the more algorithms are run, the more data are likely to be generated and the more
overhead on service execution. The right set of features has therefore to be decided
by the security manager according to the service criticality and a risk/cost analysis.
Anyway, adding/removing features is a very simple and intuitive operation that can
be carried out at runtime and does not require manual reconfiguration or re-
deployment of the whole graph.

Before applying the new configuration, formal verification techniques are applied to
ensure that the run-time service graph satisfies the required security policies.

During service operation, any relevant security event is reported by the ASTRID
dashboard to the security manager. Detected attacks are graphically pinpointed on the
service graph. The dashboard also enables to set notifications (by email, SMS or other
messaging protocol, phone call) with tailored messages to the intended recipients
(security manager, service developer, management or legal staff, etc.).

Innovation and benefits

¶ De-coupling monitoring and inspection tasks from the detection logic.
¶ Formal verification of correctness for security policies.
¶ Spatial and temporal correlation of data for a single or multiple graphs.
¶ Heterogeneous security context (network packets, logs, system calls).
¶ Application of machine learning and other arti ficial intelligence techniques.
¶ Automation of deployment and re -configuration operations.

Page 27 of 159

Deliverable D1.1

Challenges

¶ Continuous operation in detached mode or loss of connectivity.

3.7.2 Distributed firewalling

Description

Name Distributed firewall for cross-cloud applications and cyber-physical systems.

Objective
Control network traffic to/from virtual services and physical devices (IoT) deployed
in different technological and administrative domains.

Scenario

Service providers are increasingly interested in leveraging the capillary availability of
cloud installations for delocalize their services. There are several reasons that
motivate this approach: increased resilience to failures and natural disasters,
compliance with regulations on privacy and data locality, reduced end-to-end latency
and bandwidth usage, interaction with physical objects. The lack of a physically-
isolated environment implies the need to monitor all packets exchanged and to
enforce communication rules on the network flows. Depending on the specific service,
different firewalling paradigms may be necessary:

¶ Stateful packet inspection is the simplest operation mode that must be
ÓÕÐÐÏÒÔÅÄ ÔÏ ÁÌÌÏ× ÃÏÍÍÕÎÉÃÁÔÉÏÎ ÓÅÓÓÉÏÎÓ ÉÎÉÔÉÁÔÅÄ ÂÙ ȰÉÎÔÅÒÎÁÌȱ ÈÏÓÔÓȠ
inspection is usually limited to a few IP/TCP/UDP header fields.

¶ Circuit gateways allow to dynamically open specific ports, usually upon
authentication; this paradigm is often used with Voice-over-IP applications and
other services that set up multiple communication sessions.

¶ Application gateways perform deep packet inspection in packet bodies and
need to understand the specific applicationȭs syntax and protocol.

Business
cases

¶ Cloud applications deployed on multiple heterogeneous (public/private)
infrastructures.

¶ Cyber-physical systems (IoT applications, Smart Cities, Smart Grid, etc.)
¶ Fog/edge computing in 5G verticals (energy, automotive, multimedia and

gaming, smart factory).

ASTRID
stakeholders

UBITECH, POLITO, CNIT

Page 28 of 159

Deliverable D1.1

Operation

Current
practice

There are currently different approaches for enforcing filtering rules in the scenario
under consideration.

Distributed firewalls . Distributed firewalls for virtualization environments and
cloud computing build on the concept of micro-segmentation [57] , and deploy packet
inspection rules in hypervisors, while keeping centralized control. They enable very
fine-grained control over security policies, beyond mere IP-based structure [58] .
vCloud Director 8.20 by VMware includes a distributed firewall [59] , while OpenStack
Neutron includes the Security Groups feature [60] .

Micro -firewalls . In the IoT domain, recent botnets like Mirai, Brickerbot, and Hajime
have not only demonstrated the vulnerability of IoT installations, but also the
possibility to exploit compromised devices to carry out large DDoS attacks (1 Tb/s
and above). Micro-firewalls are therefore available to protect single or a small cluster
of devices with minimal hardware installation and cost, in application scenarios as
apartments and dorm rooms, commercial-control applications (SCADA), as well as
more traditional small office, home office deployments [61] [62] . Some of these
products are based on a mix of open-source technologies such as pfSense,
Linux/FreeBSD.

Virtual security appliances . Security appliances are traditionally deployed as
expensive and proprietary hardware modules. More and more vendors, such as
Fortinet, Barracuda Networks, F5 Networks, and CheckPoint, are offering software
versions of their security appliances, mostly for data centers and virtualized IT
environments, which simplify deployment and re-configuration. This simplify the
integration in virtualized environments and the automatic management by software
orchestration tools.

ASTRID
practice

Virtual services are designed by selecting micro-services or virtual network functions
(depending on the specific application domain), dragging and dropping them on the
design canvas, and by connecting them in the desired topology. Neither the software
developer nor the service developer has to care about network ports to open: the
serÖÉÃÅ ÄÅÖÅÌÏÐÅÒ ÉÓ ÏÎÌÙ ÒÅÑÕÉÒÅÄ ÔÏ ÓÅÌÅÃÔ ÔÈÅ Ȱ&ÉÒÅ×ÁÌÌÉÎÇ ÓÅÒÖÉÃÅȱ ÁÍÏÎÇ ÔÈÅ ÌÉÓÔ ÏÆ
security features provided by ASTRID. Then, IP addresses and TCP/UDP ports used by
virtual functions are already declared in the associated metadata, so the ASTRID
security orchestrator can infer the right rules for intra-service communication. The
orchestrator also sets proper restrictions on source addresses if the service
components are deployed in different infrastructures, as well as if they are connected
to external IoT devices or services. By default, access to the service from external
networks is only allowed to the public interface (for instance, it may be a web server
or REST API); the security manager can then limit the access to a restricted group of
users/subnetworks or opening additional pinholes for specific features. Filtering
rules are then set by the ASTRID orchestrator on the security hooks deployed in the
virtualization environment (virtual machines, containers).

A common security understanding is that enforcement may be ineffective without
awareness. The ASTRID dashboard also includes monitoring and alerting functions,
which report measurements and traffic analysis. Examples of available indicators
include the number of packets and amount of traffic seen to/from open ports, number
of dropped packets on closed ports, number of concurrent connections. This
information can be directly monitored and interpreted by the security manager or,
more likely, feed some detection and analysis engine that provides alerts in case of
anomalies or suspicious usage patterns.

https://www.fortinet.com/
https://www.barracuda.com/products/nextgenfirewall_x?L=it
https://www.f5.com/products/big-ip-services
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk101441

Page 29 of 159

Deliverable D1.1

Innovation and benefits

¶ Automatic definition of firewalling rules, based on specific communication needs
inferred by the graph topology.

¶ Refinement of firewalling rules by the security manager.
¶ Multi ple firewalling models are supported, independently of the specific features of the

underlying infrastructure.
¶ Network statistics are collected in a capillary way.

Challenges

¶ Fast yet lightweight filtering technologies in resource -constrained environment s and
devices.

3.7.3 Network monitoring

Description

Name Programmable network traffic monitoring for DoS protection.

Objective Flexible definition of monitoring features and statistics.

Scenario

Network operators are constantly concerned with service availability.
Telecommunication networks are often complex infrastructures, with hundreds (if
not thousands) of points of presence, where large and small customers connect and
are aggregated, interconnected by many redundant links. In addition, many
appliances are needed to implement authentication and authorization, multimedia
services (i.e., Voice-over-IP, video broadcasting), mobility, virtual private networking,
xDSL services, etc. One major problem for network operators is the presence of large
malicious flows, intended to carry out Denial-of-Service (DoS) attacks. Though telco
operators are not committed to provide security services to their customers, such
flows overwhelm their infrastructures and jeopardize the connectivity of their
customers, so they are strongly motivated to detect and mitigate DoS attacks.

The impact of DoS attacks has scaled with the growing size of the Internet, also
extending to very large Distributed Denial-of-Service (DDoS), which exploits
compromised devices and services to amplify the size of the attack (e.g., the DNS
amplification attack). The proliferation of smart (yet not hardened) devices connected
to the Internet is drastically worsening the problem: recent botnets like Mirai,
Brickerbot, and Hajime have not only demonstrated the vulnerability of IoT
installations but also the possibility to exploit compromised devices to carry out large
DDoS attacks (1 Tb/s and above). Though large deviations from historical traffic
patterns are easy to detect, the presence of a huge number of distinct rivulets of a
DDoS are far more complex to detect, correlate, and consequently mitigate.

Individual organizations are therefore likely to be subjected to (D)DoS attacks, which
the telecom operator cannot (or is not willing to) mitigate. In this case, detection of
DoS attack at the network perimeter is usually possible, so to avoid overwhelming the
internal networks and devices, but the access link remains overloaded and so Internet
connectivity is unavailable.

Page 30 of 159

Deliverable D1.1

Business
cases

¶ Monitoring and detection for virtual network operators.
¶ Monitoring and detection features in network management systems.
¶ Protection of enterprise cloud services.

ASTRID
stakeholders

ETI, CNIT, TUB

Operation

Current
practice

Current protection of telco operators from DDoS attacks is largely based on traffic
statistic collected at the network edge. Many protection tools already collect traffic
information and measurements from network devices, by using protocols like
OpenFlow, NetFlow, sFlow, IPFIX [63, 64]. These protocols have been available for
many years, and are mostly based on static, pre-defined, and inflexible filtering and
detection rules. When anomalies are detected, alerts are issued, and human staff takes
care of heavy manual re-configuration (tunnels and VPNs) that steers the traffic
towards scrubbing centers, where hardware appliances carry out in-depth analysis of
traffic flows and discard malicious traffic. Deployment of such hardware appliances at
each point of presence is considered costly and inflexible.

For the enterprise market, many vendors are now offering cloud-based DoS mitigation
services in addition to selling traditional hardware-based appliances [65] [66] [67]
[68] . Such solutions are based on big scrubbing centers deployed in the cloud, that
replace hardware appliances at the customerȭs premise. Two main architectural
solutions are usually implemented. An Always-On architecture permanently diverts
all traffic to/from the customer across the scrubbing center, which is therefore
responsible to only deliver clean traffic. In this case, the DoS attack stops at the
scrubbing center, which has enough bandwidth to not become a bottleneck for
Internet communication. With an On-Demand service, the traffic is normally delivered
to the customerȭs site. Network traffic is monitored through specific protocols; in case
of anomalies, the traffic is diverted through the cloud scrubbing center that performs
in-depth analysis and cleans the traffic until the attack ceases. In both cases, the
redirection of the network traffic may use BGP diversion methods (smaller prefix,
path prepend, advertisement and withdrawal, anycast) or DNS diversion methods.

ASTRID
practice

A cloud service or a NFV network slice [69] is designed by the service developer
according to the domain-specific model. At deployment time, the service provider
ÓÅÌÅÃÔÓ ÔÈÅ Ȱ$Ï3 ÐÒÏÔÅÃÔÉÏÎȱ ÆÅÁÔÕÒÅ ÆÒÏÍ ÔÈÅ !342)$ ÓÅÃÕÒÉÔÙ ÄÁÓÈÂÏÁÒÄȢ 4Èe security
orchestrator enriches the service graph with additional functions that may be

