Wi-fi: MARRIOT_CONFERENCE EVDT04

First Cyberwatching.eu Concertation Meeting

26 April 2018 Brussels, Belgium

Break-out 2 – Foundational technical methods and risk management for trustworthy systems

Chair: Chair: Brian Lee, Athlone IT & PROTECTIVE

Participants

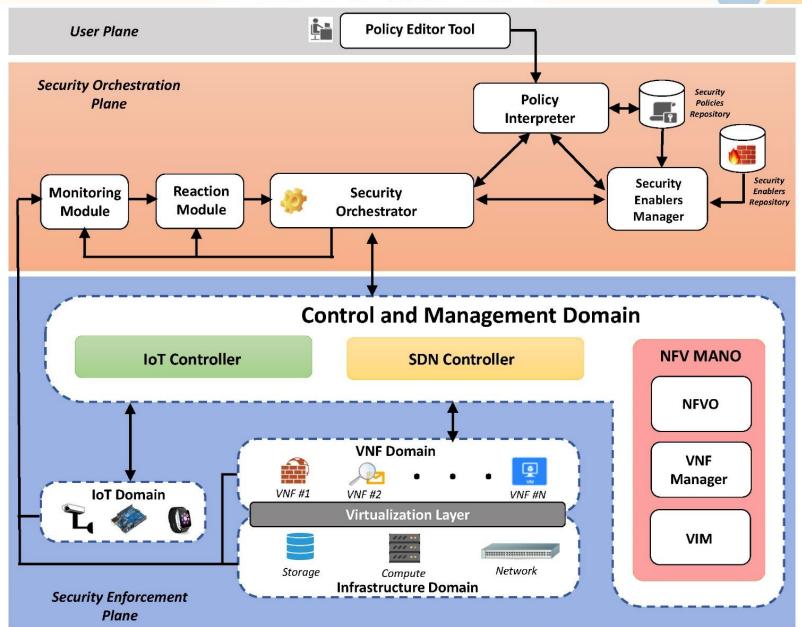
Break-out 2 – Foundational technical methods and risk management for trustworthy systems

Family Name	First Name	Project
Bernabe	Jorge Bernal	ANASTACIA
Aubigny	Matthieu	ATENA
Martinelli	Fabio	C3ISP
Rios	Davis	CYBECO
Bessani	Alysson	DISIEM
Crespo	Alberto	FENTEC
Votis	Konstantinos	GHOST
Khoffi	Ismail	HERMENEUT
Slamanig	Daniel	PRISMACLOUD
Lee	Brian	PROTECTIVE
Koeune	Francois	REASSURE
Zwingelberg	Harald	SPECIAL
Puccetti	Armand	VESSEDIA

26 April 2018 Brussels, Belgium

Dr. Jorge Bernal Bernabe
University of Murcia

https://webs.um.es/jorgebernal



http://anastacia-h2020.eu

ANASTACIA Project Objectives, challenges & results for end users

- ANASTACIA is developing a trustworthy-by-design security framework able to take autonomous decisions with networking technologies such as SDN, NFV and intelligent and dynamic security enforcement and monitoring methodologies and tools.
- The ANASTACIA cyber-security framework will provide self-protection, self-healing and selfrepair capabilities through novel enablers and components in CPS and IoT.
- Dynamically orchestrate and deploy user security policies and risk-assessed resilient actions within complex and dynamic CPS and IoT architectures
- Monitoring and reaction and techniques will allow more automated adaptation to mitigate new and unexpected security vulnerabilities
- Scenarios for influential business sectors: MEC, BMS
- Achievements so far (1st Year)
 - Project on track. Deliverables, architecture, requirements and scenarios defined, papers and events...
 - First version of Policy-based system implemented, First demos available
 - Monitoring, reaction components and SIEM tools being adapted to IoT scenarios with SDN/NFV
 - network security functions deployed as VNFs → defense mechanisms and threat countermeasures, including vFirewall, vIDS/IPS, vAAA, vChannelProtection, vIoTHoneyNet...
- Result for end users:
 - Self-protection → dynamic mitigation and countering cyber-attacks
 - Intuitive user-friendly tools to model and configure policies governing the security in CPS/IoT.

ANASTACIA Project next steps & collaboration opportunities

- Next steps in Anastacia
 - First demonstrator
 - implement different use cases related to the MEC and BMS
 - validate the proposed architecture
 - Evolve the cyber-security framework with the feedback obtained
- Collaboration opportunities
 - Look into new virtual network security functions (vNSF) for IoT/CPS
 - Security/privacy protocols in IoT: AAA, Network Access, KeyManagement, ChannelProtection
 - Monitoring agents, SIEM for IoT/CPS scenarios
 - Deal with new kind of evolving attacks in IoT/CPS
 - e.g. Low-rate attacks in IoT, Zero-days attacks
 - Explore marching learning techniques for the reaction components

26 April 2018 Brussels, Belgium

ATENA Project Objectives

Improve Security and Resilience capabilities of ICT-based Critical Infrastructures against a wide variety of cyber-physical threats (malicious attacks or unexpected faults) which may affect Essential Services

Domains of main interest are service utilities:

- electrical generation/distribution
- water treatment/distribution
- gas distribution
- Smart Grid

ATENA Project challenges and results

- ✓ Models to control physical flow efficiency and improve resilience across CIs against threats of their IACSs and related ICT infrastructures
- ✓ Distributed Intrusion and Anomaly Detection System (IADS) using Big Data technology to early detect anomalous behavior state including smart probes
- New anomaly detection algorithms and risk assessment methodologies within a distributed Cyber-Physical environment
- ✓ Methodologies and technologies for increasing auto-reconfiguring capability of ICTcontrolled CIs for resilience of Cyber-Physical systems
- ✓ A suite of integrated ICT networked components for detection and reaction in presence
 of adverse events in industrial distributed systems
- ✓ Validation of the ATENA models and tool suite in significant business-oriented Use Cases

ATENA Project next steps & collaboration opportunities

Finalize Integration of developed subsystem

Partnership with stakeholders for industrial integration

Industrials sectors

Validation on nearreal environnement Collaboration to improve security standardisation for Smart-Grid, IoT, Privacy

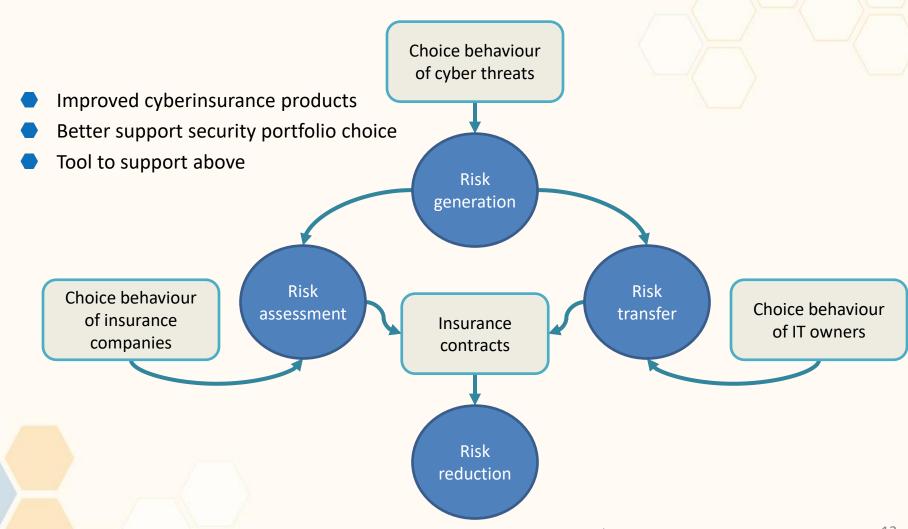
Standards

Demonstrate the concept to end-users

Collaboration with hardware and software manufacturers on smart detection, mitigation, risk assessment systems

26 April 2018 Brussels, Belgium

Fabio Martinelli, CNR


26 April 2018 Brussels, Belgium

David Ríos Insua

Objectives, challenges & results for end users

Next steps & collaboration opportunities

- Perform experiments
- Complete CYBECO tool and case studies
- Refine methodology and tool
- Complete policy analysis to feed exploitation plan

Collaborations welcome!!

- Try our methodology and help test tool
- Take part in experiments
- Share datasets
- Impact models
- Cyberinsurance ecosystem
- Join our final conference

https://www.cybeco.eu

26 April 2018 Brussels, Belgium

Objectives, challenges & results

Objective: improve existing SIEMs Visualisation **SIEM Diversity-Enhanced** and Analysis Tools **Monitoring** Reporting **Event** Correlation **Storage** Managed Normalization Infrastructure Cloud-of-clouds **OSINT Data Analysis** and Fusion **Event Archival** Public Cloud ThreatExpert **OSINT** Data Google Storage Sources Services (internet) rackspace amazon S3 Windows Azure

Virustotal

Next steps & collaboration opportunities

- Technology, research, validation...
 - **SIEMs**: Arcsight, Splunk, XL-SIEM, ElasticSearch
 - **Topics**: OSINT processing, visual analysis, machine learning for security, prediction, cloud integration
 - ■Validation: Amadeus, EDP, and ATOS environments
- Collaboration opportunities:
 - Joint dissemination activities
 - Users of our technologies
 - Exploitation opportunities

http://disiem-project.eu

First
Cyberwatching.eu
Concertation
Meeting
26 April 2018
Brussels, Belgium

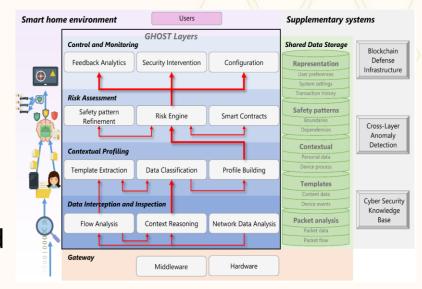
ALBERTO CRESPO, Atos Spain S.A.

FENTEC Project Objectives, challenges & results for end users

- Objectives <u>Functional EN</u>cryption <u>TEC</u>hnologies
 - Enable fine-grained access to encrypted data, programs executed on such data => novel FE crypto, HW concepts
- Challenges: develop new application-oriented FE
 - General-purpose, versatile and efficiently computable FE
 - Adequate security-efficiency-expresiveness trade-off
- Results for end-users
 - Unified API of FE functions suitable to decrypt arbitrary functions enabling enhanced security of complex systems (compartmentalization)
 - 3 real-life scenarios: digital currency, anonymous data analytics, secure Local Decision Making (LDM) for IoT

FENTEC Project next steps & collaboration opportunities

- Materialize progress (Conceptual, Practical, Implementation) levels:
 - 09/18: Requirements, prototype func. analyses, security/trust models
 - 04/19: 1st Spec. of FE Schemes
 - 08/19: 1st impl. of FE Schemes
 - 12/19: First piloting cycle starts
- Close collaboration with other Cybersecurity PPP Actions (esp. in Cryptography -DS-06-2017- PROMETHEUS, PRIVILEDGE, FutureTPM) and exchange experience on:
 - Technical foundations to enhance security of complex systems and for balancing functionality/security/efficiency
 - Approaches to improve performance incl. novel HW concepts (tamper-resistant cryptographic HW)
 - Increased trustworthiness (less need for explicit trust)


26 April 2018 Brussels, Belgium

Konstantinos Votis

GHOST Project Objectives, challenges & results for end users

- Objectives
 - Usable and effective security framework for smart home residents
 - User-centric cyber security architecture for smart home environments
 - Safeguard critical security-related data using blockchain technology

- Challenges and results for end users
 - GHOST will equip end users with their own cyber security inspection, discovery and decision toolset
 - Usable security solution to address users' tendency to choose convenience over security

GHOST Project next steps & collaboration opportunities

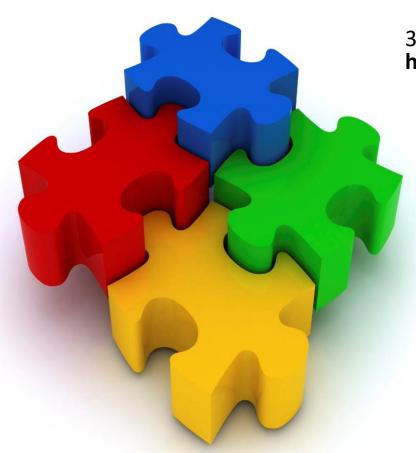
- A first version of the core security components has been designed and implemented
- Integration is ongoing
- First prototype is expected for the first trial runs (June 2018)

First
Cyberwatching.eu
Concertation
Meeting
26 April 2018
Brussels, Belgium

Ahmed Bounfour
Professor, Paris-Sud University,
Scientific Coordinator, HERMENEUT
Ahmed.bounfour@u-psud.fr

HERMENEUT Objectives

HERMENEUT Goals

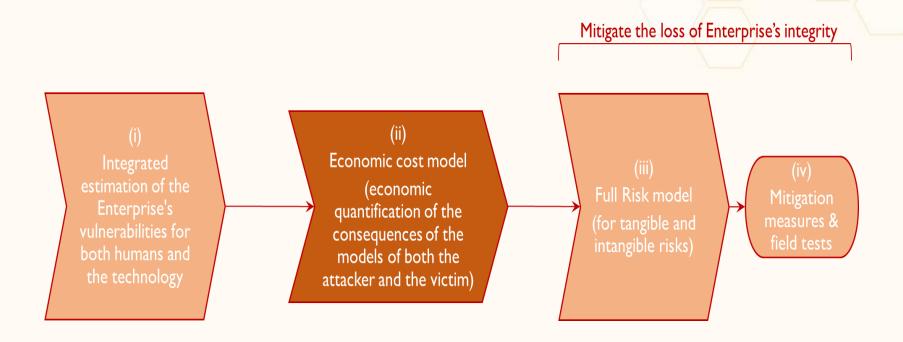

HERMENEUT Goals

First Cyberwatching.eu Concertation Meeting – 26th April 2018

HERMENEUT Goals

3/ Integrate all the above with a holistic risk assessment model

to support cyber-security investment decisions hard (traditional) and soft **mitigation measures** integrating: dedicated elicitation


Benefit-Harm Index (BHI)

approaches and

Supporting both **individual organisation** level and **industrial sector** level

HERMENEUT Approach

create a holistic approach to cyber-security cost-benefit analysis

HERMENEUT Validation

4 key market sectors:

- Healthcare
- IP-intensive Industries
- Financial services
- Retail

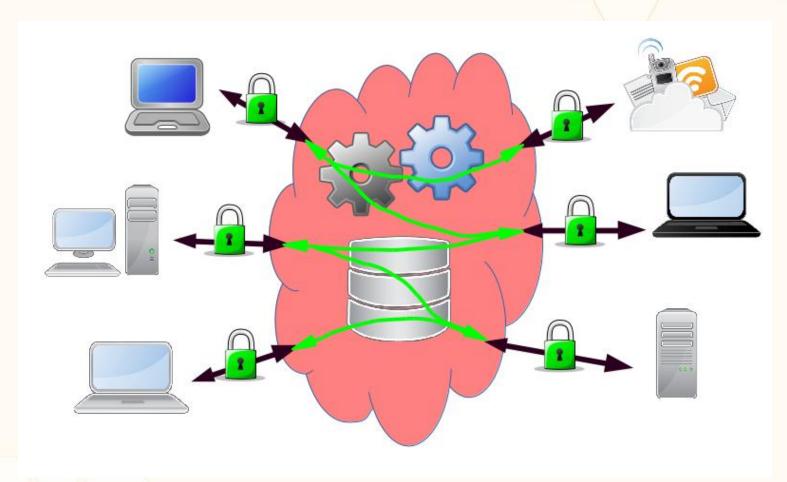
A White Paper for each sector using publicly available data sources complemented by elicited expert knowledge provide strategic guidance on the necessary investments to reduce cyber-risks focusing on soft mitigation measures.

Project next steps & collaboration opportunities

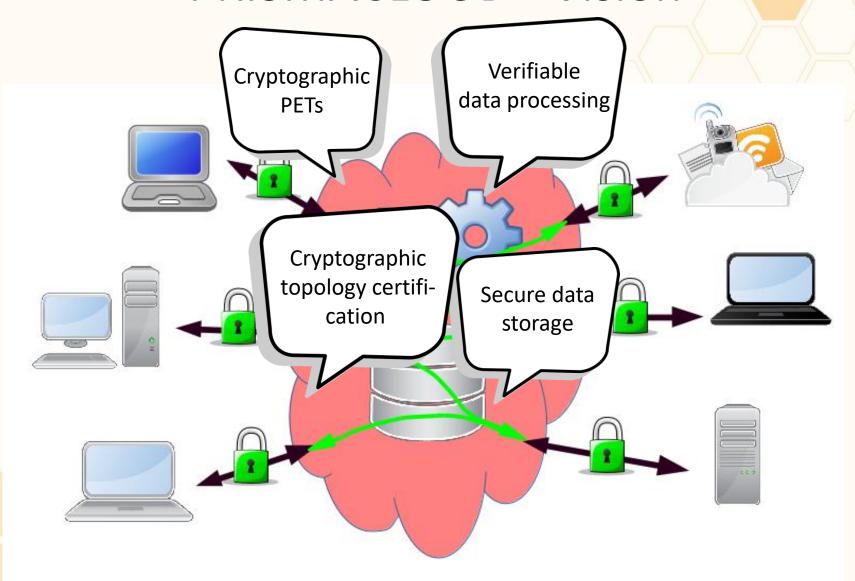
- Economics of the impact of cyberattacks, especially with regards to the intangible dimension, both <u>at</u> <u>Micro</u> and <u>Macro</u> levels
- Providing the best estimates of the impact and its related risk
- Proposals of guidelines on the likelihoods of the attacks as well as on countermeasures taking into account sectoral specificities

26 April 2018 Brussels, Belgium

Dr. Daniel Slamanig


PRIvacy and Security
MAintaining services in the
CLOUD

PRISMACLOUD - Vision



The main idea and ambition of PRISMACLOUD is to enable end-to-end security for cloud users and provide tools to protect their privacy with the best technical means possible - by cryptography.

PRISMACLOUD - Vision

PRISMACLOUD Project Objectives, challenges & results

APPLICATIONS

- Use cases of the project
- Industry-research collaboration
- · Enhancing products portfolio

SERVICES

- "Cloudification" of tools
- Make them available to applications
- Industry-research collaboration

TOOLS

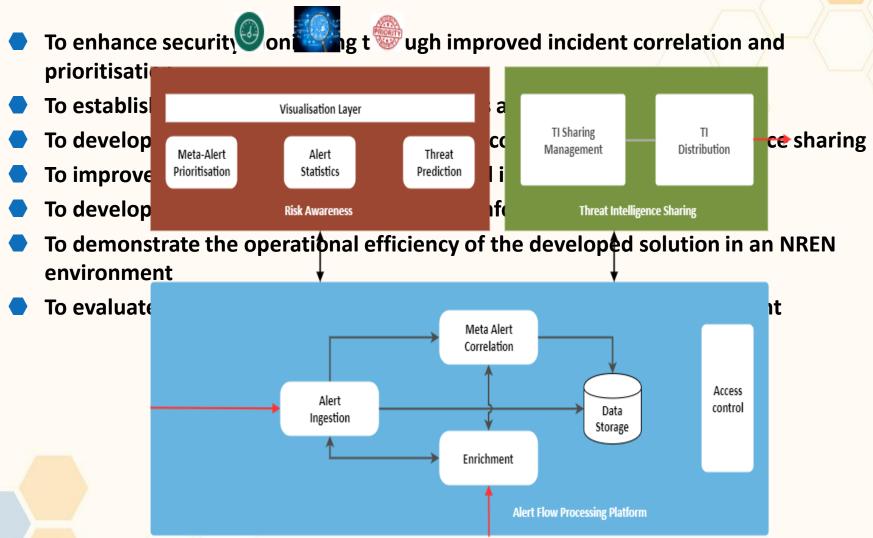
- Software libraries implementing several primitives
- Collaboration among research organizations

PRIMITIVES

- Basic cryptographic primitives and protocols
- Mostly research organizations

PRISMACLOUD Project next steps & collaboration opportunities

- Advanced cryptography implemented in tools and services
- Piloting of developed tools and services within use-cases ongoing
- Standardization of advanced cryptography



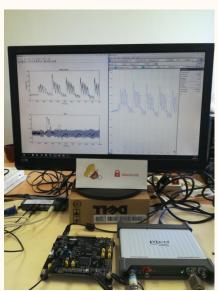
First
Cyberwatching.eu
Concertation
Meeting
26 April 2018
Brussels, Belgium

PROTECTIVE Project Objectives, challenges & results for end users

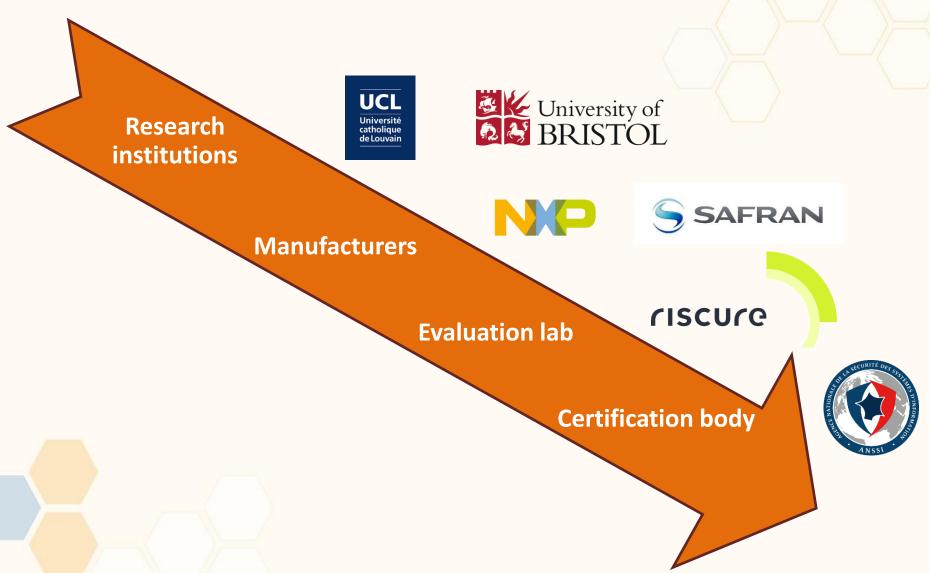
PROTECTIVE Project next steps & collaboration opportunities

- Pilot 1 –NREN (Pol., Czech., Rom.) Feb-July
- Pilot 2 Software Delivery
 - July
 - Sept
- →Pilot 2 NREN/SME
 - ■Jan July 2019
 - Possibility to participate through TI sharing either giving or receiving!

First Cyberwatching.eu Concertation Meeting


26 April 2018 Brussels, Belgium

REASSURE objectives


- Improve embedded devices security against side-channel attacks (power, EM,...)
 - Best practices, semi-automated tools, reference data for evaluators
 - For the specialist (designers, evaluation labs)
 - For the newcomer (IoT, ...)
 - Sounder, more efficient, comparable assessment

REASSURE consortium: actors from the whole chain

REASSURE next steps & collaboration opportunities

- Autumn 2018: tutorial & walk-and-explore session
- Tutorial: leakage detection
 - Which test methodologies, which parameters?
 - How to interpret results (false negative/positive)?
- Walk-and-explore, "hands-on" session
 - Test methods, practice with tools...
- For more info: francois.koeune@uclouvain.be

First Cyberwatching.eu Concertation Meeting

26 April 2018 Brussels, Belgium

Harald Zwingelberg SPECIAL Project

<u>S</u>calable <u>P</u>olicy-awar<u>e</u>Linked Data Ar<u>c</u>hitecture For Pr<u>i</u>vacy, Tr<u>a</u>nsparency and Comp<u>l</u>iance

SPFCIAI

SPECIAL's Project Objectives, challenges & results for end users

- SPECIAL platform for big data supporting:
 - Acquisition of user consent at collection time
 - Privacy-aware, secure workflows, transparency usage control and compliance verification
 - Robustness in terms of performance, scalability
 - Dashboard with feedback and control features making processing comprehensible and manageable for data subjects, controllers and processors
- Target groups for SPECIAL Results
 - Direct users of SPECIAL results will be data controllers for handling of personal data, managing consent, etc.
 - Data subjects will (re-)gain transparency and control over personal data

SPECIAL's next steps & collaboration opportunities

- Iterations for implementation of the pilots
- Extend policy engine
- Incorporate ePrivacy Regulation once public
- W3C community group defining vocabulary:
 - Taxonomy of regulatory privacy Terms,
 - Taxonomy of personal data,
 - Taxonomy of purposes, etc.
- ⇒ Visit the workshop website at : https://www.w3.org/2018/vocabws/
- Collaboration welcome in community group, future workshops, etc.
- ⇒ Contact SPECIAL: https://www.specialprivacy.eu/about/contact

First
Cyberwatching.eu
Concertation
Meeting
26 April 2018

Brussels, Belgium

Dr. Armand Puccetti

Verification Engineering of Safety and Security Critical Industrial Applications

VESSEDIA Project Objectives, challenges & results for end users at M16

VESSEDIA aims at enhancing the safety and security medium-criticality S/W, especially IoT. More precisely, making formal methods more accessible for application domains that want to improve the security and reliability of their software applications.

Results:

- 1) security requirements for IoT
- 2) on-going use-cases analyses (Contiki, 6LowPAN, etc.) using C/C++/Java analysis tools
- 3) Improved tools for the analysis of C/C++/Java: Frama-C and VeriFast
- 4) combined modelling & specification tools for vulnerabilities detection at source code level
- 5) (on-going) draft of ISO standard for V&V tools
- etc.

VESSEDIA Project next steps & collaboration opportunities

- Methodology definition for IoT V&V.
- Improved tools: modular reasoning at system level, cooperating static (Frama-C) & dynamic analyses (AFL), parallelisation of proofs, new proof tactics and simplifier, new GUI, etc.
- Complete analyses of use-cases.
- Contributions to Common Criteria certification process, evaluation of tools using Cyber Grand Challenge code samples.
- Metrics, security evaluations and quality tests of tools.
- Collaboration with project CHARIOT for common workshops.

5 R&I Challenges

1.		
2.		
3.		
4.		
5.		

Top 5 Cross-cutting themes

1.		
2.		
3.		
4.		
5.		

Top 5 New collaboration opportunities and new ideas.

1.		
2.		
3.		
4.		
5.		